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Patients with category-specific deficits have motivated a range of hypotheses about the structure of the
conceptual system. One class of models claims that apparent category dissociations emerge from the
internal structure of concepts rather than fractionation of the system into separate substores. This account
claims that distinctive properties of concepts in the living domain are vulnerable because of their weak
correlation with other features. Given the assumption that mutual activation among correlated properties
produces faster activation in the normal system, the authors predicted a disadvantage for the distinctive
features of living things for unimpaired adults. Results of a speeded feature verification study supported
this prediction, as did a computational simulation in which networks mapped from orthography to
semantics.

One of the most intriguing consequences of certain kinds of
brain damage is that patients’ conceptual knowledge may be
selectively impaired for specific categories of objects while others
remain relatively preserved. The most frequently reported disso-
ciation is a deficit for living things such as fruits, vegetables, and
animals relative to nonliving things (e.g., Sheridan & Humphreys,
1993; Warrington & Shallice, 1984). The reverse pattern, in which
conceptual knowledge of nonliving things is more severely im-
paired, has also been observed (Moss & Tyler, 2000; Warrington
& McCarthy, 1987; for reviews, see Gainotti, Silveri, Daniele &
Giustolisi, 1995; Saffran & Schwartz, 1994). This double dissoci-
ation forces us to ask how conceptual knowledge is organized such
that damage to the system can result in selective impairment of
living or nonliving things.

A number of theories have been proposed to account for this
double dissociation. One type of account is that conceptual knowl-
edge is explicitly organized into domain-specific subsystems, each
of which may be selectively impaired by brain damage (e.g.,
Caramazza & Shelton, 1998; Santos & Caramazza, 2002). How-
ever, the breakdown of conceptual knowledge does not always
respect domain boundaries. For example, some patients with a
living things deficit also have difficulties with musical instru-
ments, gemstones, or food, whereas other patients with a nonliving
things deficit show poor performance on parts of the body (e.g.,
Silveri & Gainotti, 1988; Warrington & Shallice, 1984). This has
motivated a second class of account in which the major organizing
principle of the conceptual system is type of semantic feature
rather than category or domain per se. The simplest version of this

account proposes two semantic subsystems, one for sensory and
one for functional features. On the assumption that objects in the
living domain are primarily distinguished by sensory features
while nonliving things rely on functional features, these domains
will be disproportionately impaired by damage to the sensory and
functional subsystems, respectively. This would explain why cer-
tain categories may not pattern with others in their domain; for
example, if musical instruments and gemstones are distinguished
mainly on sensory rather than functional grounds, then they should
pattern with living things rather than nonliving things. However,
the sensory–functional account does not accommodate all of the
neuropsychological data. Most importantly, the predicted associ-
ation between a loss of sensory features and a living things deficit
is absent in many patients (e.g., Laiacona, Barbarotto, & Capitani,
1993; Lambon Ralph, Howard, Nightingale, & Ellis, 1998; Moss,
Tyler, Durrant-Peatfield, & Bunn, 1998).

Partly in response to the limitations of these accounts, there have
been recent attempts to determine the extent to which patterns of
category-specific deficits can be accounted for by damage to a
single, unitary distributed semantic system (Durrant-Peatfield,
Tyler, Moss, & Levy, 1997; Gonnerman, Andersen, Devlin,
Kempler, & Seidenberg, 1997; Tyler & Moss, 2001; Tyler, Moss,
Durrant-Peatfield, & Levy, 2000). These distributed accounts
share the assumption that a concept is represented by a set of
features that may be shared by a large number of concepts (e.g.,
many things are white or green) or only by a few (e.g., few objects
have a serrated edge or are spotted). The crucial aspect of these
models is that they assume that any apparent differences between
domains or categories emerge because of differences in the inter-
nal structure of the different types of concepts rather than frac-
tionation of the conceptual system into separate substores accord-
ing to category of object or type of feature.

In this article we focus on one distributed account—the concep-
tual structure account—to test one of its core and distinctive
assumptions. In keeping with other similar models, the conceptual
structure account (Tyler & Moss, 2001; Tyler et al., 2000) claims
that each concept is represented by a set of features, some of which
are distinctive (occurring only in one or two concepts) and some of
which are shared across many concepts. Earlier studies by Keil
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(1986) and Malt and Smith (1984) claimed that features tend to be
distributed differently across concepts, with the pattern of corre-
lations between features (i.e., which features co-occur with each
other) differing systematically across concepts. These claims have
been largely supported and extended by data from property norm
studies (e.g., McRae, de Sa, & Seidenberg, 1997), which show that
concepts in the living domain have many shared properties that are
correlated with one another. For example, if a concept has the
feature, has eyes, it is also likely to have the features has a mouth,
can see, has ears, can move, has fur (Durrant-Peatfield et al., 1997;
McRae et al., 1997; Tyler & Moss, 2001; Tyler et al., 2000). The
notion that within-category similarity is higher for living things
than for nonliving things has also been captured within other
approaches to object representation (Dixon, Bub, & Arguin, 1997;
Humphreys & Forde, 2001), including classic exemplar models
(Lamberts & Shapiro, 2002), although these accounts do not
explicitly model the correlations among features. An important
aspect of the conceptual structure model, and the major difference
from other similarity and correlation-based models that have im-
plemented some of the same fundamental assumptions (e.g., Dev-
lin, Gonnerman, Andersen, & Seidenberg 1998; Humphreys &
Forde, 2001; Lamberts & Shapiro, 2002; McRae et al., 1997), is
that we incorporate a set of claims about the interaction between
distinctiveness and correlation in the living and nonliving domains.
Our central claim is that there are few correlations among the
distinctive features of living things; that is, the occurrence of any
specific distinctive property for a concept does not strongly predict
the occurrence of other properties for the same concept. We have
argued that this is at least partly due to the nature of form–function
relations for living things (see Tversky & Hemenway, 1984); for
living things, variations in form tend not to be functionally signif-
icant, at least not as far as the layperson is concerned (e.g., a lion’s
mane does not inform our knowledge of the lion’s behavior; Tyler
& Moss, 1997; Tyler et al., 2000). In contrast, nonliving things
have distinctive forms, which are consistently associated with the
distinctive functions for which they were created (De Renzi &
Lucchelli, 1994; Keil, 1986, 1989; Madole, Oakes, & Cohen,
1993).1 This is not to say that there are no form–function corre-
lations for living things, but rather that they primarily occur among
the shared rather than distinctive properties of concepts, often
concerning biological functions (eyes–see; legs–move; lungs–
breathe; Tyler & Moss, 1997). In sum, the conceptual structure
account claims that the distinctive features of living things (e.g., a
lion’s mane) are only weakly correlated with other features,
whereas the shared features are strongly correlated. For nonliving
things, both shared and distinctive features tend to be strongly
correlated, although they are relatively fewer in number (Durrant-
Peatfield et al., 1997; Greer et al., 2001; McRae et al., 1997; Tyler
& Moss, 2001).

Although the conceptual structure account is similar in many
respects to several other models that stress the importance of the
differing patterns of similarity and correlation across domains, the
specific claim about the differential patterns of correlation within
the distinctive and shared properties of living and nonliving things
seems to us to be a unique property of our model. Other
correlation-based models, such as Devlin et al. (1998) and McRae
et al. (1997), emphasize that living things have more shared
correlated properties than do nonliving things but do not specifi-
cally predict a difference in the occurrence of correlations among
the distinctive properties of the two domains. Similarity-based

accounts, including exemplar models (e.g., Lamberts & Shapiro,
2002), capture the greater overlap among living things but also
have little to say about the predicted patterns of correlation among
distinctive features.

On the conceptual structure account, these systematic differ-
ences in the correlational structure of shared and distinctive prop-
erties have important implications for the way in which concepts
are impaired by damage to the conceptual system. On the basis of
the assumption that strongly correlated properties will be relatively
robust to damage due to mutual activation (Devlin et al., 1998), we
predict that in most cases, the shared properties of both living and
nonliving things will be relatively preserved (perhaps even more
so for living things). Conversely, the weakly correlated distinctive
properties of living things will be more vulnerable to damage than
those of nonliving things, which are supported by form–function
correlations. This account not only predicts the prevalence of
living things deficits but also captures the finding that such pa-
tients typically have well-preserved knowledge of shared informa-
tion about living things, along with widespread loss of the distinc-
tive properties that would allow them to distinguish one animal or
fruit from another (Moss, Tyler, & Devlin, 2002; Moss et al.,
1998).

Elsewhere we have reported evidence consistent with the con-
ceptual structure account from a wide variety of studies with
patients and from attempts to simulate the effects of damage to the
conceptual system in computational models that instantiate our
main theoretical claims (Greer et al., 2001; Tyler et al., 2000; Tyler
& Moss, 2001). To date, the main focus of the account has been the
explanation of neuropsychological data. However, the central
question in the present study concerns the implications of the
effects of damage for the nature of the normal, intact system.
Although many insights into the normal system can be gained from
studying the effects of damage, it is also important to carry out
direct investigations of conceptual representation and processing
in the unimpaired adult population.

The present experiment tests the central prediction of the con-
ceptual structure account—that there will be a consistent disad-
vantage in processing the distinctive properties of living things
relative to other kinds of features, due to their lack of correlation
with other information—even in the normal conceptual system.
The basis for predicting a similar pattern in the intact as in the
impaired system is as follows. As we have already mentioned,
correlation supports features in a damaged system through mutual
activation. There is also evidence that this mutual activation pro-
duces faster processing times for correlated features in the intact
system. McRae and colleagues have shown that correlational struc-
ture can affect the speed with which the meaning of a concept is

1 We use the term form here to refer to all visual perceptual properties of
objects, including color, shape, and visible parts. Similarly, we use the term
function to refer to human-related design and purpose as well as biological
functions and behaviors. These uses are broadly consistent with the divi-
sion into perceptual and functional features that is commonly made in the
neuropsychological literature. Although there are undoubtedly other pos-
sible conceptual features—for example, nonvisual perceptual features such
as sound and smell, and abstract encyclopedic knowledge (e.g., tigers are
an endangered species)—these seem to be relatively few in number.
Therefore, we have adhered to the neuropsychological convention and
focused on visual and functional properties and the patterns of correlation
among them.
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activated by healthy participants (McRae, Cree, Westmacott, & de
Sa, 1999; McRae et al., 1997). In a series of feature verification
tasks, participants were asked to verify features as true or false of
a concept. Features were either highly correlated with other fea-
tures of the concept (e.g., deer–is hunted) or only weakly corre-
lated with other features (e.g., duck–is hunted). Strength of corre-
lation was a significant predictor of reaction time (RT), with more
highly correlated features verified more quickly. These results are
interpreted as showing that correlated features of concepts are
activated and reach a stable state more quickly than weakly cor-
related features, again as a result of mutual activation from other
regularly co-occurring information. Thus, although we would not
expect unimpaired adults to make errors on distinctive properties
of living things in the kinds of tests that are used with patients
(because they will perform at ceiling), we predict a parallel effect
in terms of RTs in a speeded task.

In summary, on the assumption that speed of activation in-
creases as a function of correlational strength, the conceptual
structure account makes the following prediction: Distinctive
properties of living things will be activated more slowly than those
of nonliving objects. For shared properties we predict little differ-
ence across domains, because both living and nonliving things
have groups of correlated shared properties. If anything, the pat-
tern should be in the opposite direction, as living things have a
greater number of shared properties. To test this prediction, we use
a speeded feature verification task, in which participants indicate
as quickly as possible whether features are true of concepts, as our
index of speed of activation. We also developed a computational
model that instantiated our assumptions about the representational
structure of living and nonliving things and carried out a simula-
tion of the speeded verification experiment. The model allowed us
to examine the effects of distinctiveness and correlation in isola-
tion from other lexical and semantic variables, which may be
influencing the results of the behavioral experiment.

Behavioral Experiments

We used a speeded feature verification task, in which partici-
pants decided whether a feature (e.g., HAS LEGS) was true of a
specific concept (e.g., ELEPHANT). The concepts were selected
from the domains of living and nonliving things, and the features
were either shared (true of many category members, e.g., HAS
LEGS) or highly distinctive (true of only one or two members of
a category, e.g., HAS A TRUNK). To maximize the probability of
tapping into the early activation of features in the semantic system
before it settled into a steady state, we presented the concept names
for a brief duration followed by a backward mask. A deadline was
also introduced to encourage participants to respond as rapidly as
possible, again to reflect early online processing of the concept’s
features.

The rationale for the speeded feature task is that when partici-
pants read the concept name (e.g., ELEPHANT), its various se-
mantic features (HAS LEGS, IS GREY, IS BIG, HAS A TRUNK,
EATS GRASS, etc.) begin to be activated, until a stable state,
corresponding to the ELEPHANT concept, is reached. Following
McRae et al. (1997), we assume that some features are activated
more quickly than others and that this rate of activation is affected
by correlational structure. Importantly, McRae et al. demonstrated
that correlational structure determined participants’ performance
in a speeded feature verification task but not in an untimed sa-

liency rating task, suggesting that correlation affects initial activa-
tion rate but not necessarily the final level of activation of features
once the stable state has been achieved. This pattern was con-
firmed in a computational simulation using distributed feature
representations for concepts: The effect of feature correlation
peaked early in the activation of a concept and then tailed off. On
these grounds, the earliness with which we could tap into semantic
activation was a major aim in our verification paradigm.

As discussed in the introduction, the conceptual structure ac-
count claims that weakly correlated features will be activated most
slowly, and therefore predicts that the distinctive features of living
things will be verified with significantly longer RTs and higher
error rates in the speeded feature verification task compared with
the other three conditions (living shared, nonliving shared, and
distinctive). Additionally, we can contrast the pattern of results
predicted by the conceptual structure account against the predic-
tions of an alternative account of conceptual knowledge outlined
earlier. Although the sensory–functional account does not make
any specific claims about the speed of activation of different
feature types, it would be plausible to expect that the sensory
features of living things and the functional features of nonliving
things would be verified most quickly, because these are held to be
the most salient or distinguishing features for each domain. Some
evidence consistent with this prediction was found in a priming
study in which functional features of nonliving things were facil-
itated at an earlier point in the duration of a spoken concept name
than were sensory features (Moss, McCormick, & Tyler, 1997).
However, living things were not tested in this study, so we cannot
tell whether they would show the reverse pattern, with earlier
priming for sensory than functional features. We therefore tested
for sensory–functional by domain interactions in the present ver-
ification experiment by coding each feature, not only as distinctive
or shared but also as either a functional or sensory property.

The prediction of the conceptual structure account that distinc-
tive properties of living things will be activated more slowly in the
normal system is predicated on the central assumption that these
features are weakly correlated relative to the shared properties of
living things and both the distinctive and shared properties of
nonliving objects. To confirm this basic claim and to select ap-
propriate materials for the verification experiment, our first step
was to analyze data from a property norm study, in which a large
number of participants listed as many features as they could for
concepts in the living and nonliving domains. Distributional sta-
tistics were then computed over the resulting feature lists to
determine the patterns of distinctiveness and correlation in the two
domains (aspects of these norms have been described in part
elsewhere; Greer et al., 2001; Moss et al., 2002).

Property Norm Study

Method

Forty-five participants were asked to list all the features they could think
of for a set of 93 concepts from the living and nonliving domains, including
animals, fruits, vehicles, and tools. These categories were chosen because
they are standardly used as test cases in neuropsychological studies of
category-specific deficits. We included 31 animals, 16 fruits, 22 tools, and
24 vehicles reflecting the relative numbers of well-known items in each
category. Concept familiarity (Coltheart, 1981) was matched across the
living and nonliving domains (Ms � 5.1 and 5.16, respectively). An
additional 47 filler items from a range of other categories (e.g., birds,
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musical instruments, clothing) were included in the test list to add variety
to the task.

Participants’ responses were then compiled to produce a feature list for
each concept, excluding idiosyncratic properties generated by fewer than 5
participants The data were then cleaned according to criteria based on those
used by McRae et al. (1997). First, quantifiers (e.g., generally, usually)
were removed. Second, certain key words were used to code the properties;
for example, is a tool would indicate a category label; is brown would
indicate an adjective. Third, adjective–noun properties, such as has four
wheels, were divided into has wheels and has 4 wheels on the assumption
that the participant has given two pieces of information. Fourth, disjunctive
properties (e.g., is green and red) were also divided up into is green and is
red. Fifth, verb–noun properties, such as eats grass, were divided into eats
and eats grass. The resulting feature lists were used to calculate the
following statistics.

1. The distinctiveness of each feature, in which distinctiveness is defined
as the inverse of the number of concepts in which the property is listed. For
example, a unique feature (such as HAS A TRUNK) that is present in only
one concept has a high distinctiveness score of 1, whereas a shared feature
(such as HAS LEGS) that is present in 29 of the 93 concepts has a low
distinctiveness of 1/29. This enabled us to compute the mean distinctive-
ness of properties of concepts in each domain. As predicted, mean distinc-
tiveness was higher for nonliving things (0.45) than for living things (0.33),
t(1055) � 5.4, p � .001.2

2. The number of correlated property pairs in each domain. We defined
a correlated property pair (CPP) as any pair with a Pearson product–
moment correlation having a significance of p � .05. As predicted, there
were more correlations overall for living things than nonliving things (60
vs. 25), t(91) � 7.2, p � .001, but crucially, the proportion of each
concept’s CPPs that were between two distinctive properties (i.e., proper-
ties occurring for two or fewer concepts) was significantly smaller for
living things than for nonliving things (16% vs. 30%), t(91) � 3.3, p �
.001.

3. The correlation strength for features within a concept. This was
computed for each feature–concept pair as the mean correlation between
that feature and all other features in the concept. As predicted, the corre-
lation strength among distinctive properties (those occurring for two or
fewer concepts) was significantly greater for nonliving things than living
things (.58 vs. .50, respectively), t(369) � 6.7, p � .001. This was not the
case for the shared properties, in which there was a greater correlation
strength for living things (.35) than nonliving things (.32), t(684) � 3.6,
p � .001.3

Summary

The property norm analyses show that although there are many
correlations among properties in the living domain, only a rela-
tively small proportion of these occur among distinctive features.
Moreover, the correlational strength of distinctive features of liv-
ing concepts is significantly lower than that of nonliving things.
This provides support for our starting assumption that distinctive
properties of living things are weakly correlated.

Speeded Feature Verification

Method

Participants

Twenty-six members of the Centre for Speech and Language (Cam-
bridge, United Kingdom) participant pool took part in this experiment for
which they received payment of £5 (approximately U.S. $8.80). All were
native speakers of British English, were between the ages of 18 and 40
years, and had normal or corrected-to-normal eyesight.

Design and Materials

The experimental stimuli consisted of 80 written word pairs, which were
presented in four blocks. In each pair, the first word denoted the concept
and the second word described a distinctive or shared feature (e.g., WOLF–
FIERCE). The concepts were selected from two categories in the domain
of living things (animals and fruits) and two categories in the domain of
nonliving things (tools and vehicles). Features were selected on the basis of
the property generation study described earlier. Distinctive features were
defined as those that were listed for no more than two concepts, whereas
shared features were listed for three or more. We selected only those
features that could be unambiguously expressed by a single content word.
This was to encourage fast, consistent reading times across trials.

Concept words were matched as closely as possible across the four
conditions (living/nonliving � shared/distinctive) for word length, lemma
per million frequency (Baayen, Piepenbrock, & Van Rijn, 1995), familiar-
ity and imageability (Medical Research Council Psycholinguistic database;
Coltheart, 1981), and number of senses (Parks, Ray, & Bland, 1998; Rodd,
Gaskell, & Marslen-Wilson, 2002), as were feature words. It was also
important to control for a number of additional variables concerning the
relation between the concept and feature. First, we matched for production
frequency, that is, the number of participants who listed that feature for the
concept in the property norming study. Second, we matched for the rated
semantic relatedness of the concept–feature pairs in each condition. Rat-
ings were collected in a pretest in which 15 participants indicated on a
9-point scale how related in meaning they considered each word pair, with
1 � not related at all and 9 � very related. We matched the free
association strength of the concept and feature words and chose weakly
associated pairs as far as possible to avoid a major contribution of priming
on the basis of lexical co-occurrence (Moss & Older, 1996; Nelson,
McEvoy, & Schreiber, 1998). Finally, we calculated the mean correlation
strength for the distinctive and shared properties of living and nonliving
things to confirm that we had the same pattern of correlation in this set,
compared with the full property norm set.

Table 1 lists the mean values for each of these variables across the four
conditions. Although we matched as closely as we could, it can be seen
from Table 1 that some differences remained. It was not possible to match
on all variables because of the limited set of potential items. Also, some
variability is simply inherent to particular feature types. For example,
distinctive features, because they apply to fewer objects in the real world,
tend to be of lower frequency than shared features. To address this potential

2 Although significant, the true difference in distinctiveness across do-
mains may be even greater than this, because of the underrepresentation of
shared information in the property generation paradigm. Many researchers
have pointed out that participants are unlikely to repeatedly list all the
common properties of category members (e.g., breathes, can move), fo-
cusing instead on the properties that distinguish among them (e.g., Murphy
& Medin, 1985). Thus a high proportion of shared information—for living
things especially—may not be revealed in this paradigm. We have explored
various ways of compensating for any underrepresentation of shared in-
formation, such as adding properties generated directly in response to
superordinate category names (e.g., we asked participants to list all the
properties of animals or vehicles), and have found that the main patterns of
results were little changed. In general, any differences are in the direction
predicted by our model (e.g., more shared, correlated information for living
things). Therefore, for the sake of simplicity, we report the data from the
basic unsupplemented property lists here.

3 Note that the correlation strength is higher overall for distinctive than
shared properties in this set of results. This is because of the very high
weighting that is given to correlations among the most distinctive proper-
ties that occur for one concept only. If two such properties occur for one
concept and no others, then their correlation is 1. However, the important
point here is the domain difference in correlation strength within the
distinctive set rather than the shared–distinctive comparison.
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problem, we entered any unmatched variables that correlated with RTs or
error rates as covariates in the data analysis.

To ensure an equal proportion of true and false trials throughout the
experimental list, we constructed a further 80 concept–feature pairs as
foils. These were pairs in which the feature was not generally true of the
concept (e.g., APPLE–SHY). We included the same number of living and
nonliving concepts in the foil items as in the experimental items and did not
repeat concepts within a presentation block. Approximately 75% of the
false features were taken from concepts within the same domain (e.g.,
GIRAFFE–GROWL—a giraffe does not growl, but the feature is true of
other members of the animal category, such as bear and lion), and 25% of
features were taken from concepts in the opposite domain (e.g.,
ELEPHANT–WHEELS). The high proportion of within-domain foils was
intended to avoid the possibility that the verification task would be so easy
that participants would lose interest in responding quickly. There was the
same number of repeated foil features within a block as there were repeated
test features. This was to ensure that the repetition of a feature was not
predictive of a “yes” response.

We divided the test and foil pairs into four experimental blocks; each
block contained 20 experimental items requiring a “yes” response and 20
foil items requiring a “no” response. In each block, the type of relationship
between concept and feature was held constant. For example, in one block
the feature always referred to a part of the concept’s referent, as in
HORSE–(HAS A) TAIL and CAR–(HAS) WHEELS. At the beginning of
each block, participants were informed as to the type of relation to expect.
In this way we were able to reduce the feature to a single word, thereby
facilitating the very fast presentation that we considered necessary to tap
into the early stages of activation of the semantic system. If different types
of relation were presented in random order, a single word feature could be

ambiguous (e.g., KNIFE–HAND could mean that a knife is held in the
hand, which is true, or that a knife has a hand, which is false).

For two blocks the feature was always a sensory characteristic of the
concept (e.g., LEMON (IS) JUICY). In the third block the feature was again
a sensory one, but this time referring to a visible part of the concept (e.g.,
HORSE (HAS A) TAIL). For the fourth block the feature word referred to
the typical use or function of the concept’s referent (e.g., PENCIL (IS
USED TO) WRITE). The same number of living and nonliving things items
required a “yes” and “no” response in each block. The following are
examples of each type of block:

1. Living:
CHERRY round

Non-living:
NEEDLE thin

Relation:
IS

2. Living:
MONKEY legs

Non-living:
KNIFE blade

Relation:
HAS

3. Living:
DONKEY ride

Non-living:
PEN write

Relation:
USED TO

We used a 2 � 2 independent measures design, in which the independent
variables were domain (living and nonliving) and distinctiveness (distinc-
tive and shared). The dependent variables were RT and error rate.

Procedure

The task was speeded feature verification, in which participants were
presented with a written word denoting a concept followed by a word
denoting a feature. The experiment began with written instructions describ-
ing the kind of concept–feature relation to be verified in the block of items

Table 1
Descriptive Statistics for the Stimuli

Condition N Letters Frequencya Familiarityb Imagabilityb

Concept variables

Living
Distinctive 13 5.0 23 522 613
Shared 29 5.5 18 502 624

Nonliving
Distinctive 17 6.2 16 509 610
Shared 20 5.8 27 503 590

Feature variables

Living
Distinctive 13 5.5 23 533 521
Shared 29 5.0 107 548 483

Nonliving
Distinctive 17 4.8 76 507 541
Shared 20 4.9 147 581 448

Condition N
Correlation

strength
Semantic

relatednessc
Production
frequency

No. of
sensesd

Association
strengthe

Concept–feature variables
Living

Distinctive 13 .55 5.98 9 4.1 6.6
Shared 29 .30 5.35 13 4.2 1.28

Nonliving
Distinctive 17 .42 7.04 22 3.9 8.19
Shared 20 .35 5.60 16 5.4 3.72

Note. a Celex Lexical Database (Baayen et al., 1995). b Medical Research Council psycholinguistic database
(Coltheart, 1981) and Centre for Speech and Language (CSL) laboratory pretests. c Pretest conducted in CSL
laboratory. d Wordsmyth English Dictionary–Thesaurus (Parks et al., 1998). e Birkbeck association norms
(Moss & Older, 1996) and University of South Florida free association norms (Nelson et al., 1998).
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about to be presented. Participants were also shown examples of the type
of item to be presented in the block. They then pressed the space bar to
begin.

On each trial, participants saw a fixation point in the center of a
computer screen for 500 ms. This was followed by a concept word,
presented in uppercase letters for 60 ms, followed by a backward mask (a
series of #) for 150 ms to reduce the potential for continued semantic
processing of the concept after the word was removed from view. After an
interval of 100 ms, the feature word was presented in lowercase letters for
100 ms. After a further 450 ms, a tone sounded over headphones. Partic-
ipants were asked to try to “beat the tone” by pressing the “yes” response
button if the words were related and the “no” button if they were not. If
they gave the correct answer they were given feedback that included their
RT; if they gave an incorrect answer they were given the message “wrong.”
There was an intertrial interval of 1,000 ms.

The 4 blocks of items were randomly interleaved with 13 other blocks
from another experiment. The experiment began with an additional practice
block, and each block began with three lead-in items. The duration of the
experiment was approximately 1 hr.

Results

Analyses were conducted on 79 items, as 1 item was lost due to
experimenter error. Before analysis, the raw response times for all
correct verification trials were inverse transformed to minimize the
effects of outlying data points without introducing truncation bi-
ases (Ulrich & Miller, 1994). Error analyses were conducted on the
proportions of errors (false negatives) calculated over items and
participants in each condition.4

Reaction Times

Table 2 shows the retransformed (harmonic) mean latencies for
correct “yes” responses in each condition. Table 2 also gives the
estimated marginal means to allow for the influence of significant
covariates (as discussed below).

Analyses were conducted on means in two ways: over all of the
items in a condition for each participant to give the participants’
means (F1) and over all of the participants for each item to give the
item means (F2). A 2 (domain) � 2 (distinctiveness) repeated
measures analysis of variance (ANOVA) on the participant (F1)
means and a 2 (domain) � 2 (distinctiveness) independent mea-
sures ANOVA on the item (F2) means for correct responses only
showed that RTs to living things (M � 513 ms, SE � 8.90) were
slower overall than to nonliving things (M � 488 ms, SE � 9.00),
F1(1, 25) � 24.01, p � .001; F2(1, 75) � 5.18, p � .05. There was

no main effect of distinctiveness (F1 and F2 � 1), with RTs to
distinctive pairs averaging 504 ms (SE � 9.9) compared with 500
ms for shared pairs (SE � 7.9). However, distinctiveness inter-
acted significantly with domain, F1(1, 25) � 50.79, p � .001;
F2(1, 75) � 8.25, p � .005. To explore this interaction, we
conducted further ANOVAs. First, we conducted an analysis on
the living and nonliving items separately. For living things, the
47-ms advantage for shared features (500 ms, SE � 9.94) over
distinctive features (547 ms, SE � 14.90) was significant, F1(1,
25) � 25.85, p � .001; F2(1, 41) � 6.76, p � .025. The 25-ms
advantage for distinctive features (475 ms, SE � 11.65) over
shared features (500 ms, SE � 13.06) for nonliving things was
significant only in the participant analysis, F1(1, 25) � 13.94, p �
.001; F2(1, 34) � 2.22, p � .1. We then carried out ANOVAs on
the shared and distinctive properties separately. For the distinctive
properties, RTs to nonliving things were significantly faster than to
living things, F1(1, 25) � 61.01, p � .001; F2(1, 28) � 13.93, p �
.001, whereas for the shared properties, RTs to living and nonliv-
ing things were identical.

Finally, using the Newman–Keuls statistic we compared means
across all four conditions (living distinctive, living shared, nonliv-
ing distinctive, and nonliving shared). This analysis showed that
there was no difference among the RTs for living shared, nonliving
distinctive, and nonliving shared. Only the living distinctive items
differed from the other three conditions.

Because it was not possible to fully match the materials across
conditions on all the relevant variables, we also carried out a
correlational analysis to determine whether any potentially con-
founding stimulus variables were significant predictors of RT. We
entered the mean RT for each concept–feature pair and all the
descriptive variables shown in Table 1 into a series of bivariate
correlations. The results showed that three variables correlated
significantly with RT: production frequency, r(79) � .32, p �
.005; rated semantic relatedness between concept and feature,
r(79) � .40, p � .001; and association strength between concept
and feature words, r(79) � .27, p � .025. These variables were
entered into a further analysis of covariance as covariates. In this

4 In the analyses reported here, we include the data from all participants
and all items. We also carried out additional sets of analyses in which the
data from very slow participants and items that attracted high error rates
were removed. The pattern of results was the same as in the analyses
reported here.

Table 2
Speeded Feature Verification Experiment: Mean Retransformed Reaction Times and Error Rates
for Distinctive and Shared Features of Living and Nonliving Things

Measure

Living Nonliving

Distinctive
(n � 13)

Shared
(n � 29)

Distinctive
(n � 17)

Shared
(n � 20)

Reaction time (ms)
M 547 (15) 500 (10) 475 (12) 500 (13)
Estimated marginal M 553 (14) 484 (9) 506 (13) 494 (11)

Error rate (%)
M 33 (4.6) 22 (3.0) 17 (4.0) 20 (3.8)
Estimated marginal M 36 (4.5) 18 (3.0) 19 (4.3) 20 (3.6)

Note. Standard errors are in parentheses.
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analysis, there were two independent measures (domain: living/
nonliving and distinctiveness: shared/distinctive) and three covari-
ates (production frequency, semantic relatedness of concept and
feature, and association strength of concept and feature). We found
no main effect of domain (F2 � 1), although distinctiveness was
significant, F2(1, 72) � 9.89, p � .01. The crucial interaction
between domain and distinctiveness remained significant, F2(1,
72) � 5.69, p � .025. Separate analyses showed that for living
things, distinctive properties (553 ms) were responded to more
slowly than shared properties (484 ms), F2(1, 38) � 20.17, p �
.001. For nonliving things there was no significant difference in
RTs to distinctive (506 ms) and shared properties (494 ms), F2 �
1. For distinctive properties only, RTs for living things were
significantly slower than for nonliving things, F2(1, 25) � 4.29,
p � .05. For shared properties, there was no difference between
living and nonliving concepts (F2 � 1).

Error Rates

Errors are informative about the activation of semantic infor-
mation, on the assumption that participants made errors in cases in
which they attempted to respond before the deadline because of
insufficient correct information, rather than reflecting deliberate
incorrect decisions on difficult items. This assumption is supported
by the finding that RTs on error trials (false negatives) were just as
fast as those on correct trials (M � 523 ms, SE � 10.2 and M �
542 ms, SE � 5.3, respectively).

A 2 (domain) � 2 (distinctiveness) repeated measures ANOVA
on the participant means and a 2 (domain) � 2 (distinctiveness)
independent measures ANOVA on the item means showed a main
effect of domain, F1(1, 25) � 18.33, p � .001; F2(1, 75) � 3.38,
p � .05, with more errors for living things (M � 25.0%, SE � 2.6)
than for nonliving things (M � 18.2%, SE � 2.8). Distinctiveness
was significant only on the participant analysis (M distinctive �
23.6%, SE � 3.8; M shared � 20.9%, SE � 2.0), F1(1, 25) � 4.54,
p � .05; F2(1, 75) � 1.10, p � .2. However, just as in the RT
analysis, there was a Domain � Distinctiveness interaction that
was highly significant in the participant analysis and marginally
significant in the items analysis, F1(1, 25) � 19.30, p � .001;
F2(1, 75) � 3.38, p � .07. A separate analysis showed that for
living things, the distinctive properties incurred significantly more
errors than the shared (33% vs. 22%), F1(1, 25) � 14.60, p � .001;
F2(1, 41) � 4.31, p � .05. There was no difference between the
distinctive (17%) and shared (20%) properties for the nonliving
things, F1(1, 25) � 2.55, p � .1; F2 � 1. For the distinctive
properties, there were significantly more errors for living things
than for nonliving things, F1(1, 25) � 25.89, p � .001; F2(1, 28) �
5.14, p � .05. For shared properties, there was no significant
difference between living things and nonliving things (both Fs �
1). A Newman–Keuls test showed that only the distinctive features
of living things produced more errors than any other condition.

Once again, because the conditions were not completely
matched on all the relevant variables, we looked to see if any
variable correlated with error rate using the item means. We
conducted a series of bivariate correlations to see if any of the
descriptive variables shown in Table 1 were related to error rate.
Two variables correlated significantly with error rate: production
frequency, r(79) � –.25, p � .05, and semantic relatedness,
r(79) � �.35, p � .0025. We repeated the items ANOVA but
included production frequency and semantic relatedness as covari-

ates. The adjusted means, following this analysis, showed the same
pattern as in the original analysis. We found no main effect of
domain (F2 � 1) but a significant effect of distinctiveness, F2(1,
73) � 6.59, p � .025. With covariates added, the interaction
between distinctiveness and domain was not significant, F2(1,
73) � 1.29, p � .2, However, there were many more errors for the
living things distinctive features (M � 32.8%, SE � 4.5) than for
the shared features (M � 18.3%, SE � 3.0), and this difference
was statistically reliable, F2(1, 39) � 5.97, p � .025.

The results of both the RT and error analyses show that partic-
ipants had most difficulty with the distinctive properties of living
things. In all the analyses there was a significant difference be-
tween living and nonliving things for the distinctive feature con-
ditions but little or no difference for the shared features. This
pattern of results is precisely as predicted by the conceptual
structure account (Tyler & Moss, 2001; Tyler et al., 2000).

Regression Analyses

In addition to the factorial ANOVA analyses, we also examined
the data using multiple regression techniques, for two reasons.
First, because there were different numbers of items in each of the
different conditions in this experiment, the power of the factorial
design may have been reduced. Second, we classified distinctive
features as those that were generated for one or two concepts in the
property norm study, and shared features as those that were gen-
erated for three or more concepts. However, in reality, distinctive-
ness is a continuous rather than binary variable, which may be
better modeled in a regression analysis. We entered four factors
into the regression analysis: semantic relatedness, production fre-
quency, association strength (as we know these variables correlate
with RT), and distinctiveness. In a simultaneous multiple regres-
sion, we found that distinctiveness was a significant predictor of
RT for the total data set (unstandardized beta coefficient � –0.20,
SE � 0.07), t(78) � –3.00, p � .005. When we examined the two
domains separately, the effect for living and nonliving things
differed. For living things only, the regression analysis showed
that distinctiveness remained a significant predictor (unstandard-
ized beta coefficient � –0.5, SE � 0.08), t(42) � –4.13, p � .001,
whereas it was not significant for the nonliving things (unstand-
ardized beta coefficient � –0.04, SE � 0.11), t(35) � –0.37, p �
.7. We then carried out a parallel regression analysis, with error
rates rather than RTs as the dependent variable, and found the
same pattern. Overall, distinctiveness was a significant predictor
(unstandardized beta coefficient � 0.18, SE � 0.06), t(78) � 3.31,
p � .001. When living and nonliving things were examined
separately, distinctiveness was only a significant regressor for the
living things: living things, unstandardized beta coefficient � 0.22,
SE � 0.07, t(42) � 3.11, p � .005; nonliving things, unstandard-
ized beta coefficient � 0.15, SE � 0.09, t(35) � 1.63, p � .1.

The results of these regression analyses confirm the results of
the ANOVAs and support the predictions of the conceptual struc-
ture account. For living things, the more distinctive a feature is, the
slower the RT in this speeded verification task. There was no such
effect of distinctiveness for nonliving things.

Sensory–Functional Account

When designing the materials for this experiment, we coded
items for the sensory or functional nature of the feature. This
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enabled us to analyze the data to determine whether the functional
and sensory features of living or nonliving things produced differ-
ent patterns of performance, as would be predicted by the sensory–
functional account.

RTs. The mean RTs are shown in Table 3 and were explored
in an ANOVA with two independent measures (domain: living and
nonliving; type of feature: sensory or functional). RTs to nonliving
things (M � 488 ms, SE � 8.97) were faster than to living things
(M � 513 ms, SE � 8.81), F1(1, 25) � 16.16, p � .001; F2(1,
75) � 4.36, p � .05, and faster to functional features (M � 494 ms,
SE � 9.54) than to perceptual features (M � 510 ms, SE � 8.61).
This difference was significant only in the participant analysis,
F1(1, 25) � 7.63, p � .025; F2(1, 75) � 1.72, p � .1. There was
no interaction between type of feature and domain, F1(1, 25) �
1.49, p � .2; F2 � 1.

When we repeated the analysis on the item means, including
variables that covary with RT (semantic relatedness, production
frequency, and association strength), the effects of domain and
type of feature were lost (domain: F2 � 1; type of feature: F2 �
1). Most importantly, there was still no interaction between do-
main and type of feature (F2 � 1).

Error rates. Participants made more errors for living things
(M � 25.0%, SE � 2.6) than nonliving things (M � 18.2%, SE �
2.8). This difference was significant by participants and marginally
significant by items, F1(1, 25) � 12.89, p � .001; F2(1, 75) �
3.23, p � .08. However, there was no difference in number of
errors to perceptual (M � 21.8%, SE � 2.5) or functional features
(M � 22.0%, SE � 2.9; both Fs � 1) and no interaction between
type of feature and domain (both Fs � 1). When semantic relat-
edness and production frequency were added as covariates in the
analysis, there were no significant effects at all: domain, F2 � 1;
type of feature, F2(1, 73) � 1.38, p � .2; Domain � Type of
Feature interaction, F2(1, 73) � 1.04, p � .3. Thus, both RT and
error analyses fail to provide any support for the sensory–
functional hypothesis. In contrast, the results of this speeded
feature verification study generate a pattern of RTs and errors that
are predicted by the conceptual structure account.

Unspeeded Feature Verification

The results of the speeded feature verification task appear to
support the predictions of the conceptual structure account, but it
is also possible that the pattern of RTs and error rates reflects
differences in how well participants perceive the feature to match

the concept. It is possible that we selected a set of distinctive
features for the living things that are not as well fitted to their
concepts as features from the other conditions, and hence are
simply more difficult to relate to each other. If this were the case,
we should find that these properties are less reliably judged to be
true of their concepts than those in the other conditions, even in a
task in which speed of activation is not a factor. To test whether
this was the case, we carried out a further study in which partic-
ipants were asked to judge whether each of the feature–concept
pairings in the experiment was true or false.

We constructed a booklet in which each of the experimental
items and the foils from the speeded feature verification task were
listed in the same blocks, and with the same relationship between
concept and feature as in the original experiment. Fifteen partici-
pants were asked to judge each concept–feature pair as true or
false. The results are shown in Table 4. An ANOVA showed that
there are no statistical differences in these judgments: domain, F �
1; distinctiveness, F(1, 75) � 3.11, p � .08; Domain � Distinc-
tiveness: F � 1. A Newman–Keuls post hoc test revealed that there
are no differences between any of the separate conditions in this
rating task. The results of this task show that the results we
obtained in the speeded feature verification task cannot be attrib-
uted to differences in the difficulty of judging how well the feature
matches the concept. Although there was a marginal effect of
distinctiveness, such that error rates were higher for distinctive
features than shared features, there was no evidence of a difference
between the distinctive properties of living and nonliving things.

Computational Model

According to our conceptual structure account, the differences
between living and nonliving concepts—seen both in patients and
in the performance of healthy participants in the present study—
reflect systematic differences in correlational structure of concepts
across domains. Although we have focused on distinctiveness and
correlation throughout the development of the model, we would
not, of course, suggest that these are the only factors that determine
the processing and breakdown of conceptual representations; con-
cept familiarity, autobiographical relevance, property salience and
cue validity, knowledge of causal relations, and many other factors
may also play a part. Our strategy has been to start with just the
two factors of distinctiveness and correlation to see how far these
can account for the data before adding further complexity.

Table 3
Speeded Feature Verification Experiment: Mean Retransformed Reaction Times and Error Rates
for the Functional and Perceptual Features of Living and Nonliving Things

Measure

Living Nonliving

Functional
(n � 21)

Perceptual
(n � 22)

Functional
(n � 18)

Perceptual
(n � 18)

Reaction time (ms)
M 510 (14) 517 (10) 476 (13) 501 (13)
Estimated marginal M 504 (14) 517 (10) 496 (14) 499 (12)

Error rate (%)
M 25 (4.3) 25 (3.2) 19 (4.1) 18 (3.9)
Estimated marginal M 23 (4.4) 22 (3.3) 26 (4.3) 17 (3.8)

Note. Standard errors are in parentheses.
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With this in mind, a potential counterargument to our account is
that the results of the present study are due to one or more of these
additional factors rather than to correlational structure. Although
we partialed out several important lexical and semantic factors in
our covariate and regression analyses, we cannot claim to have
ruled out all possible relevant variables. The aim of the computa-
tional model is to address this theoretical possibility by testing the
effect of correlational structure in a more tightly controlled, albeit
artificial context, by using a computational simulation. In the
simulation, we can ensure that the network does not “know”
anything else about the concepts other than their internal struc-
ture—that is, the trained pattern of activation over feature vectors.
Information such as familiarity, salience, lexical association, and
so on is not available to the network.

The computational simulation reported here uses the set of
concepts and properties generated in the property generation study
described earlier in this article and allows us to test whether an
interaction between domain and distinctiveness can emerge from
differences in the correlational structure of living and nonliving
things, in the absence of any other information about the concepts
or properties. Although this would not entail that correlational
structure also plays a part in the human system, it would demon-
strate the plausibility of an account in which correlation is a key
explanatory variable.

Method

Network Architecture

A feed-forward network was trained on the mapping between orthogra-
phy and semantics. The model’s architecture is presented in Figure 1. The
network mapped from 200 orthographic to 396 semantic feature units, via
50 hidden units.

Training Patterns

Word form units. The orthography of each of the 93 concepts was
represented by turning on 50 of the 200 orthographic units. Each word had
a unique orthographic pattern that was generated pseudo-randomly, with
the constraint that all concepts differed by at least 6 units. Therefore, these
input patterns capture two important characteristics of the mapping from
form to meaning. First, it is largely arbitrary. Second, because each word
form unit has a one in four chance of being activated for each concept, the
patterns are highly overlapping.

Semantic feature units. The semantic representations for the 93 con-
cepts were taken directly from the property norms described earlier. There
were exemplars from four categories (31 animals, 16 fruits, 22 tools, and
24 vehicles). Each concept retained all of the features that had been listed
by at least 5 of 45 participants during property norming, resulting in a total
of 396 semantic features. Each of the 396 semantic units in the semantic
feature layer corresponds to one of these features. On average, concepts

activated just 11.3 of the 396 features, making these representations rela-
tively sparse. As for the speeded feature verification analysis, each seman-
tic feature was classified as distinctive if it was present in only one or two
concepts, and as shared if it was present in at least three concepts. The
living concepts had 196 distinctive features and 451 shared features; the
nonliving things had 175 distinctive features and 235 shared features.

Training

During each learning trial, the network was presented with the ortho-
graphic and semantic representations that correspond to one of the 93
concepts, and the strength of the connections between the units was
modified according to the back-propagation learning algorithm (Rumel-
hart, Hinton, & Williams, 1986; learning rate � 0.25, momentum � 0.5).
The values of these parameters were chosen to optimize the network’s
performance across the whole set of features; that is, they were all set such
that the network was able to learn the whole training set as quickly as
possible. The network was trained in a series of epochs in which all 93
concepts were presented once in random order. The network continued to
train until the activation of all features for every concept was within a
threshold of 0.1 (i.e., at least 0.9 if it should be activated and less than 0.1
if it should be off).5 One hundred individual networks with different small
initial random weights (�0.05) were trained using this procedure.6 On
average, these networks took 221 epochs to reach threshold.

Testing: Error Scores

For each of the 93 concepts, the orthographic input pattern was pre-
sented, and the resulting output at the semantic units was measured. For
every concept, the error score for each feature was calculated as the
difference between the target activation (0 or 1) and its actual activation. In
the following analyses we focus on the network’s performance on the
features that should be turned on for a particular concept (e.g., LION–CAN
ROAR), because these correspond to the “yes” responses in the feature
verification experiment. In total there are 1,057 concept–feature pairs of
this type. In all cases (because of the threshold used during training), the
output for these features was above 0.9, and therefore the errors are very

5 This simulation has been repeated with different values for the activa-
tion threshold; the pattern of results is stable across these changes.

6 Three additional networks that did not reach the threshold performance
after 5,000 epochs were excluded from the analysis.

Figure 1. Architecture of the feed-forward network. Not all connections
are shown. Where connections are shown, full connectivity was used.

Table 4
Unspeeded Feature Verification Experiment: Mean True Ratings

% true ratings

Living Nonliving

Distinctive
(n � 13)

Shared
(n � 29)

Distinctive
(n � 17)

Shared
(n � 20)

M 87 (2.5) 94 (1.9) 88 (6.7) 94 (2.5)

Note. Standard errors are in parentheses.
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small. Following Seidenberg and McClelland (1989) we interpret these
error scores as an analogue of both RT and accuracy in the behavioral
experiment; items that have lower error scores are those for which we
would expect faster and more accurate performance under time pressure.

The error scores for the distinctive and shared features of the living and
nonliving concepts are shown in Figure 2. The mean error rates for the
different conditions were averaged across features and networks, and these
mean values were subjected to ANOVAs that mirror those reported for the
feature verification experiment. (For these analyses, F1 represents condi-
tions averaged across the different networks and F2 represents conditions
averaged across the different items in the training set.) These analyses
show that the error scores were higher for living things (M � 1.25%, SE �
0.00) than for nonliving things (M � 1.12%, SE � 0.00), F1(1, 99) � 14.2,
p � .001; F2(1, 1053) � 21.4, p � .001. There was also a main effect of
distinctiveness, with higher error scores for distinctive features (M �
1.42%, SE � 0.00) than for shared features (M � 0.96%, SE � 0.00), F1(1,
99) � 444.0, p � .001; F2(1, 1053) � 252.0, p � .001. This main effect
was not present in the speeded feature verification experiment, as we
discuss below. Most importantly, there was an interaction between distinc-
tiveness and domain, F1(1, 99) � 156.4, p � .001; F2(1, 1053) � 21.9, p �
.001. The form of the interaction was that there was a significant effect of
domain for the distinctive features (M � 1.55%, SE � 0.001 for living
concepts; M � 1.28%, SE � 0.001 for nonliving concepts), t1(99) � 6.3,
p � .001; t2(369) � 9.0, p � .001, but not for the shared features (M �
0.96%, SE � 0.00 for both living and nonliving concepts), t1(99) � 0.06,
p � .9; t2(684) � 0.05, p � .97. This is the same pattern as was seen in the
speeded feature verification experiment.

Testing: Cascaded Activation

One possible difficulty in relating these results to the results of the
feature verification experiment is that we are using an error score as the
measure of the network’s performance. Although it is a well-established
method to use these error scores to simulate participants’ performance on
a speeded task, we decided to evaluate the network’s performance in a
second way that arguably provides a more transparent analysis of the time
to activate features in the human system, using a technique proposed by
Cohen, Dunbar, and McClelland (1990). This method allows us to look at
the time course of semantic activation by cascading activation through the
network. Information from lower levels gradually propagates upward,
allowing the activation of the semantic units to develop over time. This
gives us a more direct measure of how long it would take the network to
produce the appropriate output for different types of features.

The results of this cascaded approach replicate the interaction between
domain and distinctiveness reported earlier. These effects were present

throughout the settling of the network. We analyzed in detail the number
of update cycles taken by the network to reach an activation level of 0.7.7

These analyses showed that although the living concepts settled more
slowly (M � 66.0 cycles, SE � 1.09) than the nonliving concepts (M �
65.4 cycles, SE � 1.13), this difference was not significant (both Fs � 1).
There was a main effect of distinctiveness, with longer settling times for
distinctive features (M � 70.7 cycles, SE � 1.12) compared with shared
features (M � 60.7 cycles, SE � 0.74), F1(1, 99) � 377, p � .001; F2(1,
1053) � 160, p � .001. Most importantly, there was an interaction between
distinctiveness and domain, F1(1, 99) � 10.0, p � .01; F2(1, 1053) � 21.9,
p � .001, such that for the distinctive features there was a significant
disadvantage for the living things (M � 72.3 cycles, SE � 1.20 for living
concepts; M � 69.2 cycles, SE � 1.22 for nonliving concepts), t1(99) �
3.4, p � .001, but not for the shared features (M � 59.8 cycles, SE � 1.08
for living concepts; M � 61.7 cycles, SE � 1.15 for nonliving concepts),
t2(99) � 1.1, p � .2. Although there is a main effect of distinctiveness in
the model, this is a very similar pattern to the one in the speeded feature
verification experiment.

Effect of Parameters on Network Performance

The results described above show that a simple back-propagation net-
work can show the predicted interaction between domain and distinctive-
ness. This is an important demonstration that the interaction can result from
the distributional properties of the semantic features of these concepts,
without the need for additional assumptions about differences between
semantic domains. However, one question that arises is how stable is this
result to changes in the network. In this section we independently vary each
of the parameters used during the training and testing of the network (while
keeping all other variables constant) and investigate the effect of these
changes on the network’s performance. For each value of each parameter,
we repeated the training and testing of 100 independent models and
analyzed the error scores as described above.

Hidden Units

The number of hidden units in a back-propagation model can have
important consequences on its behavior (e.g., see Seidenberg & McClel-
land, 1989). In the simulations reported above, the model had 50 hidden
units. This was the minimum number of units with which the network
could successfully train. We investigated the effect of increasing the
number of hidden units by varying this parameter from 50 to 200 (this was
the number of input units) in steps of 10.

Learning Rate

This variable is used during training and controls the magnitude of the
change that is made to the weights on each learning trial (Rumelhart et al.,
1986). It was set to 0.25 in the original simulation. This was the maximum
value at which the network could successfully train. We investigated the
effect of decreasing this value by varying its value from 0.05 to 0.25 (in
steps of 0.05).

Momentum

This variable is used during training. Each time the weights are updated,
the change made to each connection strength incorporates a proportion of
the change that was made on the previous update (Rumelhart et al., 1986).
This variable specifies this proportion and was set to 0.5 in the original
simulation. This was the maximum value at which the network could

7 The pattern of the network’s behavior was stable over a range of
threshold activation values between 0.5 and 0.9.

Figure 2. Network error scores (%) for the distinctive and shared features
of living and nonliving things.
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successfully train. We investigated the effect of decreasing this value by
varying its value from 0 to 0.5 (in steps of 0.1).

Tolerance

This variable specifies when the network stops training. In the original
simulation it was set to 0.1, which means that for all training patterns, the
activation of each output unit had to be within 0.1 of its target activation,
that is, greater than 0.9 for semantic features that are present for a particular
concept and less than 0.1 for all other features. We investigated the effect
of this parameter by varying its value from 0.05 to 0.4 (in steps of 0.05).

Results

The results showed that for three of the four parameters (hidden
units, momentum, and tolerance) the pattern of differences be-
tween the four conditions remains constant for all values of the
parameter (see Figure 3). In particular, a significant interaction
between domain and distinctiveness was always present (all ps �
.01), with higher error scores for the distinctive properties of living
things compared with the distinctive properties of nonliving things
(all ps � .001). This difference was always larger than any domain
difference for the shared properties.

It is interesting to note that the only parameter that did have a
significant effect on the pattern of the network’s performance was
learning rate. Although the pattern of results was stable across
most of the range, when the learning rate was set to be very small
(0.05) the interaction between domain and distinctiveness disap-
peared. In particular, the disadvantage for the distinctive features
of living things disappeared. This suggests that the effect of
correlational structure is reduced when the network is making very
small changes to its weights on each trial.8

In summary, both the original model and the cascaded activation
model replicated the Distinctiveness � Domain interaction that
was observed in the speeded feature verification experiment. In
both cases, the distinctive properties of living things were more
error-prone, or took longer to settle than the distinctive properties
of nonliving things, while there was no such difference for the
shared properties. This shows that a system with no other sources
of information can demonstrate clear processing differences for
living and nonliving things, which must be driven by the differ-
ences in correlational structure inherent in concepts in the two
domains (or at least as estimated by our property generation
results). Further, the pattern of behavior shown by the model is
stable across a wide variety of changes to the model’s parameters.

However, unlike the behavioral experiment, the model also
showed a significant main effect of distinctiveness, with distinctive
properties being more error-prone overall than shared properties.
This is perhaps not surprising, because by definition, the model
encounters shared properties more frequently than distinctive
properties during training (i.e., shared properties are present in
many concepts, distinctive in only a few), and so they will be
better learned. This will lead to an overall advantage for shared

8 It is also possible that this effect of learning rate relates to the sparsity
of the patterns. In general, more sparse patterns need a higher learning rate
because they have fewer units contributing to the error score. On average,
the nonliving concepts have fewer features than the living concepts, there-
fore learning the more sparse nonliving concepts will be particularly
difficult at small learning rates. This may, in part, be responsible for the
relative improvement in performance for the living concepts when the
learning rate is small.

Figure 3. The effects of different parameters on network performance. Solid circles � living distinctive; solid
squares � nonliving distinctive; open circles � living shared; open squares � nonliving shared.
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properties. The more puzzling aspect of the results perhaps is that
human participants do not also show the same overall advantage
for the more frequently occurring shared properties. We suggest
that the explanation for this lack of main effect of distinctiveness
in humans is likely to be due to the complex interactions of the
additional semantic variables, which we highlighted in the intro-
duction to the modeling section. Although more infrequently en-
countered in absolute terms—for humans just as for the model—
distinctive properties are perhaps more salient, more important in
causal explanations and in their relevance to people’s everyday
experience; thus, their relatively infrequent occurrence across the
entire domain is at least partially compensated for, and error rates
reduced. Because the simulations had no such additional informa-
tion (by definition, as this was their raison d’etre), the relatively
low incidence of distinctive properties was directly revealed in
their overall error rate. While this explanation may be somewhat
speculative, the unpredicted distinctiveness effect does not seri-
ously undermine the contribution of the simulation, because (a) the
distinctiveness main effect is readily explained within the model
by the relative frequency of exposure to distinctive and shared
properties during training, and (b) our specific prediction was
about the Distinctiveness � Domain interaction, which is reliably
shown across all the simulations.

General Discussion

The purpose of the experiments reported here was to investigate
one of the key claims of the conceptual structure account—
namely, that the distinctive properties of living things will be
slower to activate in the semantic representation compared with
the distinctive features of nonliving things. This prediction was
confirmed in a speeded feature verification task, which showed a
significant interaction between domain and property type, with the
distinctive properties of living things being verified more slowly
than the distinctive properties of nonliving things.

These results provide support for one of the major, and perhaps
counterintuitive, claims of the conceptual structure account. Tyler
et al. (2000) and Tyler and Moss (2001) argued that because the
distinctive features of living things are only weakly correlated with
other features, this makes them particularly slow to be activated in
comparison with the distinctive features of nonliving things, which
tend to be correlated with each other. This weaker activation is
predicted to reveal itself in slower RTs and in higher error rates, as
was the case in the present experiment. The slower RTs for the
distinctive properties of living things suggest that their access is
slower than to shared features. Within the conceptual structure
account, we claim that what will delay access and make perfor-
mance more error-prone is the fact that the distinctive features of
living things are not highly correlated with other features. Their
activation is not facilitated by the strong coactivation of other
features.

We also found that error rates and RTs to the shared features of
living things and nonliving things were very similar. Given that
our property norms show that living things have more shared
features (and therefore more correlated shared features), we might
have predicted differences here, with faster RTs to the shared
properties of living things compared with the shared properties of
nonliving things. However, the finding that the distinctive prop-
erties of living things generated significantly slower RTs and more
errors than any of the other three experimental conditions, and that

the mean RT of the three other conditions was very fast (481 ms),
suggests that participants were operating at their limits in this
speeded paradigm. At these very fast latencies, small differences
might not be detectable. Thus, although it remains a possibility that
differences in the degree to which shared properties are correlated
for living and nonliving things may be reflected in differences in
the speed with which they are activated, it may not have been
possible to observe these differences using the present paradigm.

The same interaction between domain and distinctiveness that
was present in the speeded feature verification task was also
observed in our computational simulation, in which we trained a
network on the mapping from orthography to semantics. With two
different measures of the network’s performance, there was a
significant effect of domain for the distinctive but not the shared
features. Because the internal structure of the concepts is the only
source of variation available to the model, this provides strong
evidence that this interaction arises because of differences in the
structure of the concepts.

The specific pattern of results that we have obtained in the two
studies reported here—the Domain � Distinctiveness interac-
tion—cannot be accounted for on any other existing model of
category-specific deficits. In the domain-specific account (Car-
amazza & Shelton, 1998), conceptual knowledge is organized by
category, with evolutionary demands generating specialization for
a small number of categories such as living things and plant life.
On this account we might expect performance on living things to
be facilitated (i.e., overall faster RTs and fewer errors) relative to
performance on nonliving things. Our results do not support this
account. Neither are our results compatible with the claims of the
sensory–functional account. Warrington and Shallice (1984) ar-
gued that perceptual features are more salient in the representation
of living things compared with nonliving things and that functional
features are more salient in the representation of nonliving things.
This distinction would predict more errors and slower RTs for the
functional properties of living things and for the perceptual fea-
tures of nonliving things. However, we found no interaction be-
tween type of feature and domain. Finally, the distributed model of
Gonnerman et al. (1997) claims that living things have more
shared correlated features and fewer distinctive features than non-
living things overall, but the model does not specifically identify
the distinctive features of living things as being weakly correlated
and therefore slow to activate in the normal system.

The results of the speeded feature verification study provide
strong evidence in support of feature-based accounts of conceptual
knowledge (e.g., Caramazza, Hillis, Rapp, & Romani, 1990;
Forde, Francis, Riddoch, Rumiati, & Humphreys, 1997; Hum-
phreys, Riddoch, & Quinlan, 1988; McNamara & Miller, 1989).
The results of the computational simulation further suggest that
these features are represented in a nonfractionated distributed
semantic system and that conceptual structure emerges out of this
system as a result of correlational structure. This type of account
clearly offers certain advantages in attempting to develop theoret-
ical explanations for the detailed patterns of impaired and pre-
served knowledge exhibited by patients who have semantic defi-
cits. For example, it provides a natural explanation for the
ubiquitous finding that brain damage does not selectively impair a
particular type of property or category in an all-or-none manner.
Instead, deficits tend to be graded, as predicted by distributed
connectionist accounts that show graceful degradation when dam-
age is simulated (Hinton & Sejnowski, 1986). Second, it provides
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a framework for interpreting the fine-grained patterns of preserved
and impaired properties in patients following brain damage to the
semantic system. Explaining category-specific deficits in terms of
damage to distinct types of knowledge (whether categories or
properties) does not in itself elucidate the structure of concepts.
We suggest that this is a necessary step toward developing a
theoretical account of so-called category-specific impairments.

Finally, the conceptual structure account is one of a number of
unitary distributed models of semantics, such as the organized
unitary content hypothesis (OUCH, Caramazza et al., 1990). How-
ever, it represents an advance over these earlier models in that it
addresses one of the criticisms that has been leveled against
them—they are so flexible that they can explain any pattern of
deficit and are therefore theoretically unhelpful (e.g., Caramazza &
Shelton, 1998). By developing specific claims about conceptual
structure, based on well-supported claims in the psychological
literature (e.g., Keil, 1986, 1989; Malt & Smith, 1984), we have
been able to constrain the power of the account and make falsifi-
able predictions, thus overcoming this kind of objection.
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