
Cognitive Science 40 (2016) 325–350
Copyright © 2015 The Authors. Cognitive Science published by Cognitive Science Society, Inc.
All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/cogs.12234

Feature Statistics Modulate the Activation of Meaning
During Spoken Word Processing

Barry J. Devereux,a Kirsten I. Taylor,a,b Billi Randall,a Jeroen Geertzen,a

Lorraine K. Tylera

aDepartment of Psychology, Centre for Speech, Language and the Brain, University of Cambridge
bDepartment of Geriatrics, Memory Clinic, University Hospital Basel

Received 1 March 2013; received in revised form 12 November 2014; accepted 29 December 2014

Abstract

Understanding spoken words involves a rapid mapping from speech to conceptual representations.

One distributed feature-based conceptual account assumes that the statistical characteristics of con-

cepts’ features—the number of concepts they occur in (distinctiveness/sharedness) and likelihood of

co-occurrence (correlational strength)—determine conceptual activation. To test these claims, we

investigated the role of distinctiveness/sharedness and correlational strength in speech-to-meaning

mapping, using a lexical decision task and computational simulations. Responses were faster for con-

cepts with higher sharedness, suggesting that shared features are facilitatory in tasks like lexical deci-

sion that require access to them. Correlational strength facilitated responses for slower participants,

suggesting a time-sensitive co-occurrence-driven settling mechanism. The computational simulation

showed similar effects, with early effects of shared features and later effects of correlational strength.

These results support a general-to-specific account of conceptual processing, whereby early activa-

tion of shared features is followed by the gradual emergence of a specific target representation.

Keywords: Concepts; Semantic features; Spoken word processing; Lexical decision; Connectionist

modeling; Attractor networks; Lexical semantics; Conceptual structure

1. Introduction

Understanding spoken words involves accessing and processing their conceptual repre-

sentations. This requires the rapid and efficient mapping from speech input to word mean-
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ings, a process known to be influenced by a variety of lexical, phonological, semantic,

and contextual factors (e.g., Grainger & Jacobs, 1996; Grondin, Lupker, & McRae, 2009;

Hargreaves & Pexman, 2014; Marslen-Wilson, 1987, 1990; Marslen-Wilson & Tyler,

1980; McClelland & Elman, 1986; Moss, Ostrin, Tyler, & Marslen-Wilson, 1995; Yap,

Pexman, Wellsby, Hargreaves, & Huff, 2012). One approach to the representation of

word meanings is framed in terms of distributed feature networks in which concepts cor-

respond to patterns of activation across semantic feature units, such as has eyes, has ears,
and has stripes (Cree, McNorgan, & McRae, 2006; Durrant-Peatfield, Tyler, Moss, &

Levy, 1997; Farah & McClelland, 1991; Greer et al., 2001; McRae, de Sa, & Seidenberg,

1997; Pexman, Lupker, & Hino, 2002; Tyler, Moss, Durrant-Peatfield, & Levy, 2000).

Within this framework, the statistical characteristics of features are claimed to determine

how concepts are represented and processed during on-line comprehension. Two of the

key statistical characteristics that have been proposed are correlational strength and dis-
tinctiveness/sharedness (Clarke, Taylor, & Tyler, 2011; Cree et al., 2006; McRae, Cree,

Seidenberg, & McNorgan, 2005; McRae et al., 1997; Moss, Tyler, & Taylor, 2007; Tay-

lor, Devereux, Acres, Randall, & Tyler, 2012; Taylor, Moss, & Tyler, 2007; Tyler et al.,

2013). Correlational strength is a measure of the tendency of one feature to co-occur with

other features; for example, has eyes and has ears co-occur in the same concepts more

often than is grey and has teeth (Durrant-Peatfield et al., 1997; Keil, 1986; Malt & Smith,

1984; McRae et al., 1997; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). Most

distributed, feature-based models (e.g., Cree, McRae, & McNorgan, 1999; McRae et al.,

1997; Randall, Moss, Rodd, Greer, & Tyler, 2004; Taylor et al., 2012) claim that the

activation of features in the network leads to the coactivation of other features with which

they are strongly correlated, or “connected.” Distributed models therefore propose a facil-

itatory role for correlational strength in the activation of conceptual representations, with

weakly correlated features activating more slowly than strongly correlated features (Cree

et al., 1999; McRae, Cree, Westmacott, & de Sa, 1999; McRae et al., 1997; Randall

et al., 2004; Taylor, Salamoura, Randall, Moss, & Tyler, 2008; Taylor et al., 2012).

The second key feature statistic, distinctiveness/sharedness, is a continuous variable

that varies between highly distinctive features that occur in few concepts (e.g., has an
udder, has a mane) and highly shared features that occur in many concepts (e.g., has a
tail, has legs). Some findings have suggested that distinctive features play a privileged

role in the organization and activation of semantic knowledge—activating earlier and

stronger than shared features during the computation of word meaning (e.g., Cree et al.,

2006)—whereas other accounts have focused more on the kind of information represented

in distinctive features, positing that the importance of distinctive and shared information

differs as a function of information demands of the given task context (Bright, Moss,

Longe, Stamatakis, & Tyler, 2007; Grondin et al., 2009; Taylor, Devereux, & Tyler,

2011; Taylor et al., 2012). For example, the conceptual structure account (CSA; Moss

et al., 2007; Taylor et al., 2012, 2007; Tyler & Moss, 2001a; Tyler, Moss, et al., 2000)

claims that highly distinctive features are required for basic-level concept identification

because they differentiate the target from similar concepts (e.g., the distinctive feature

has a mane helps differentiate a lion from a tiger). Highly shared features (e.g., has
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legs) provide information about the semantic category or domain to which a concept

belongs (e.g., animal or living thing) and so are sufficient for tasks which require broad

category-level differentiation rather than differentiation between similar concepts

(Humphreys, Price, & Riddoch, 1999; Humphreys, Riddoch, & Quinlan, 1988; Lloyd-Jones

& Humphreys, 1997; Moss & Tyler, 1997; Moss, Tyler, Durrant-Peatfield, & Bunn, 1998;

Taylor et al., 2012, 2007).

An additional critical dimension in conceptual processing is the time course of activa-

tion of shared and distinctive properties. Our recent empirical work testing the CSA sup-

ports a model of semantic processing where the emergence of a conceptual representation

evolves in a general-to-specific manner, with more general features (i.e., those shared by

many different concepts) activating earlier, on average, than the more specific, distinctive

information that distinguishes between similar concepts (Clarke, Devereux, Randall, &

Tyler, in press; Clarke, Taylor, Devereux, Randall, & Tyler, 2013; Clarke et al., 2011;

Taylor et al., 2011). A recent MEG experiment investigating the spatio-temporal nature

of object processing (Clarke et al., 2013) provides neurocognitive support for this gen-

eral-to-specific hypothesis. In this study, participants identified visual objects for which

feature statistic information was available. The influence of non-semantic low-level vari-

ables was controlled (just as was the case for words in the current study; see below), as

was the proportion of visual semantic features for the concept. The MEG analyses

showed that initial perceptual effects in the visual cortices were rapidly followed (within

120 ms) by effects of shared features in the ventral temporal lobe. Later (post-200 ms),

the effects of both shared and distinctive features were seen in the ventral temporal cor-

tex. These results suggest that coarse, category-level information which relies on the acti-

vation of shared features is available early in processing with distinctive information

specific to the concept becoming available later. This general-to-specific model is similar

to the notion of coarse-to-fine-grained visual processing, where low spatial frequency

information (such as the general shape of an object) is processed before more specific

visual detail (Bar et al., 2006; Hegd�e, 2008; Schendan & Stern, 2008).

The general-to-specific hypothesis within the context of the CSA suggests that the ear-

liest stages of conceptual processing should be primarily driven by the initial activation

of many shared features throughout the semantic network (some of these features may be

within the target concept, but many will be outside of it; Fig. 1A). Over time, as process-

ing continues toward a specific target representation, the settling of activation will be dri-

ven by the mutual coactivation of features within the concept: Concepts with features that

are strongly interconnected with each other will settle toward their target representation

faster than concepts that have relatively weakly interconnected features (Cree et al.,

1999; McRae et al., 1997, 1999). Thus, the influence of the correlational strength of a

concept’s features is predicted to build up over time and primarily affect later stages of

processing, as correlated features within the target concept’s representation become mutu-

ally coactivated (Fig. 1B; for a computational simulation on how feature correlation

drives network settling over time, see Cree et al., 1999). The latest stages of processing

reflect the activation of a specific target conceptual representation, that is, when distinc-

tive features become fully integrated into the representation (Fig. 1C). Depending on the
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demands of the task, the earlier more general level of representation may be sufficient to

perform the task and activation of distinctive concept-specific information may not be

required. The general-to-specific account incorporates the differing claims that have been

made for distinctiveness/sharedness in conceptual processing by incorporating the dimen-

sion of time: Shared features may be important for early, more general activation, such

as that required for category-level judgements, whereas distinctive features become

important at later stages of processing where a specific conceptual representation needs to

be activated.

Could a similar general-to-specific mechanism underlie spoken word comprehension?

According to interactive models of spoken word recognition such as the cohort model

(Marslen-Wilson, 1987), semantic activation begins relatively early during the time

course of processing, before the point at which the word can be uniquely identified. Early

semantic activation must therefore momentarily be driven by all words in the cohort of

words that are consistent with the currently available speech input (e.g., on hearing the

onset [bi:], the semantics of “beaker,” “beetle,” “beach,” etc., will recieve transient acti-

vation; Marslen-Wilson, 1987, 1993; Zwitserlood, 1989). In a distributed, feature-based

framework, this early semantic activation must necessarily be partial and imprecise,

consisting of an overlapping “blend” of constituent features from the cohort concepts

(Gaskell & Marslen-Wilson, 1997, 1999, 2002). An interesting question is whether some

kinds of features are privileged over others within this initial activation blend; for

example, features that are more central to the cohort concepts’ meaning may activate

more strongly than features that are more peripheral to core meaning (Moss, McCormick,

& Tyler, 1997). Thus, one possibility, consistent with the general-to-specific hypothesis,

(A) (B) (C)

Fig. 1. Cartoon illustrating the hypothesized effects of conceptual structure on the activation of the concept

tiger over time. Small circles represent semantic features, and their color saturation represents the level of

activation. Lines represent activation flow between features. (A) In the initial stages of processing, activation

is spread diffusely over features throughout the semantic network. Shared features are initially weakly acti-

vated via the word form level, and many of these belong in the target representation (e.g., has whiskers) but
others do not (e.g., is domestic). (B) Over time, mutually reinforcing activation gradually builds up between

the correlated features within the concept, increasing overall activation within the target representation. The

speed of this within-concept coactivation depends on the mean correlational strength between features within

the concept. In the context of a lexical decision task, within-concept coactivation in stages (A) and (B) pro-

vides semantic evidence that the word denotes a real concept. (C) Weakly correlated distinctive features

(lives in India and has stripes in this illustration) activate slower, facilitating tasks that require access to a

specific representation, such as object naming (Taylor et al., 2012).
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is that feature statistics may influence how strongly features within the blend are

activated—shared features will on average be true of more cohort members and therefore

may be more strongly activated. As the cohort gradually decreases in size, semantic activa-

tion becomes more specific, and distinctive information becomes relatively more activated.

In the present study, we used a lexical decision task to examine the role of feature statis-

tics at different phases of the online processing of spoken words. The activation of seman-

tic information is not logically required to decide whether an isolated word form is a real

word (Grainger & Jacobs, 1996; Seidenberg & McClelland, 1989), but a large body of evi-

dence attests to the influence of semantic information on lexical decisions (e.g., Balota,

Ferraro, & Connor, 1991; Binder et al., 2003; Chumbley & Balota, 1984; Grondin et al.,

2009; Hargreaves & Pexman, 2014; Hino & Lupker, 1996; James, 1975; Moss et al., 1995;

Pexman, Hargreaves, Siakaluk, Bodner, & Pope, 2008; Pexman et al., 2002; Tyler, Voice,

& Moss, 2000; Yap et al., 2012). Although non-semantic factors may also be expected to

influence decision latencies, the nature of the semantic effects on lexical decision perfor-

mance is the focus of the present manuscript. The lexical decision task allows us to investi-

gate our general-to-specific hypothesis, because the influence of feature sharedness/

distinctiveness and correlational strength within the concept should vary at different stages

of processing. In particular, the sharedness of a concept’s features should determine the

amount of initial activation in the semantic network. An alternative hypothesis can be gen-

erated from the findings of Cree et al. (2006). In a pair of feature verification tasks (in

which (a) nouns were followed by features, and (b) features were followed by nouns), Cree

et al. found that distinctive features were verified true of the noun more quickly than

shared features. Cree et al. argued that distinctive features have a privileged status in the

computation of word meaning and thus increased distinctiveness of a concept’s features

should facilitate processing (Cree et al., 2006; but see also Grondin et al., 2009).

We measured the influence of conceptual structure statistics on the on-line processing

of individual concepts, using omnibus variables that measure the overall distinctiveness/

sharedness and overall correlational strength of features within the concept (see also

Grondin et al., 2009; Taylor et al., 2012). Given that lexical decision latencies to spoken

words are known to depend on a large number of lexical, phonological, and other concep-

tual variables, we used a regression design, enabling us to take the influence of these

variables into account. We planned to measure the initial (compared to late) quality of

information available by comparing fast as opposed to slow responders. Participants who

respond more rapidly in the lexical decision task because of the influence of early general

activation should show greater sensitivity to the overall sharedness of concepts’ features,

with concepts that have many shared features, generating large amounts of activation over

semantic space, being responded to faster than concepts with fewer shared features. How-

ever, slower participants may take longer to accrue sufficient semantic evidence before

responding. Slower participants’ lexical decisions would then be more strongly influenced

by the activation of a network of correlated features within the concept. For example, in

deciding that tiger is a real word, slower participants may be more influenced by activa-

tion of the network of features corresponding to the category large cat because a coherent

category-level representation such as this is stronger evidence of lexical meaning (we
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therefore hypothesize that participants may respond around the stage depicted in Fig. 1B).

In this scenario, the gradual mutual coactivation of interconnected features within the

concept enables a positive decision, and the speed at which features of the concept coac-

tivate, as measured by the mean correlational strength of shared features within the con-

cept, has a stronger influence on decision latencies.

In a second experiment, we investigate the mechanics of the general-to-specific

account and the role of feature statistics in semantic processing using a connectionist sim-

ulation of the mapping from spoken input to distributed meaning representations. We

implemented an attractor model, based on the Cree et al. (2006) architecture and adapted

to simulate the activation of word meaning from continuous speech input. The model

allows us to examine how the activation levels of different kinds of features within target

concepts evolve over time, through recurrent connectivity. In particular, we predicted that

concepts with many highly shared features (i.e., low mean distinctiveness) would show

stronger overall activation at earlier stages of word processing, compared with concepts

with more distinctive features, for which activation levels would take longer to build up

over time. Furthermore, we predicted that mean correlational strength of shared features

in the target concepts would become gradually more facilitatory as activation settled

toward the target representation.

In summary, the two experiments were designed to test predictions for the influence of

feature statistics at different phases of the online processing of spoken words. For lexical

decision, we predicted (a) a facilitatory effect of the degree of initial, general semantic

activation (i.e., shared features), since lexical decision does not require basic-level identi-

fication, and (b) a facilitatory effect of the degree of correlational strength between the

features within the concept, particularly for slower participants who are more likely to

base their responses on additional, later semantic information that yields a coherent cate-

gory-level representation. For the simulations of Experiment 2, we predicted (a) concepts

with many highly shared features would generate higher levels of overall activation at

early processing stages compared with concepts with more distinctive features, and (b)

stronger overall activation for concepts with strong connections between features at later

stages of processing.

2. Experiment 1: Behavioral study

2.1. Method

2.1.1. Participants
Thirty-four native British English speakers with normal hearing (aged 18–35) partici-

pated in the experiment. They were paid £6 for their participation.

2.1.2. Design and materials
Stimuli were concepts from the McRae et al. (2005) property norms, modified for

use with British English-speaking participants (see Taylor et al., 2012, for details).
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Homophones (e.g., bat, cap, and inn) were excluded, leaving a total of 447 experimental

items. Four hundred forty-seven pronounceable non-word stimuli were created by rotating

the syllables from the real words. The words and non-words were digitally recorded in a

random order in a sound-proof booth by a female native British English speaker.

We obtained the following information for each word: the number of phonemes, its

log lemma frequency (from CELEX; Baayen, Pipenbrook, & Gulikers, 1995), stimulus

duration in milliseconds, and familiarity (taken from the MRC Psycholinguistic Database

(Coltheart, 1981) when available [68% of concepts] and otherwise from laboratory pre-

tests [at least 15 participants per concept]). In order to avoid the high collinearity

between number of phonemes and stimulus duration (r = .74), we reexpressed our phono-

logical measure as a measure of the rate of phonemic change in the word (“phoneme

rate,” i.e., number of phonemes divided by stimulus duration). This provided a conceptu-

ally easily interpretable measure of phonology that was relatively uncorrelated with dura-

tion (r = .17), and we predicted that the phonologically richer input of high phoneme rate

items would be facilitatory (see, e.g., Baayen, Davidson, & Bates, 2008; Baayen, Feld-

man, & Schreuder, 2006; for similar reexpressions of collinear predictors). The number

of features (NOF) associated with each concept, calculated from the anglicized McRae

norms, was also included as a control variable. Concepts with more features will tend to

generate richer semantic activation (all else being equal), and so we expect a facilitatory

role for NOF (Pexman, Holyk, & Monfils, 2003; Pexman et al., 2002).

Two feature statistics, capturing different structural characteristics of each concept,

were calculated. The distinctiveness of a feature was defined as the multiplicative inverse

of the number of concepts that it occurs in (McRae et al., 2005; for example, feature

occurring in two concepts has a distinctiveness of 0.5). Distinctiveness values therefore

vary along a continuum from maximal distinctiveness (i.e., very high distinctiveness val-

ues) to maximal sharedness (i.e., very low distinctiveness values). Like McRae et al.

(2005), we define a feature as distinguishing if it occurs in only one or two concepts and

shared if it occurs in more than two concepts. For each concept, we calculate the mean
distinctiveness of the concept’s features (i.e., the average of the distinctiveness values for

each feature in the concept).

The strength of correlation between a pair of features was calculated as the Pearson

correlation between the production frequency vectors for the two features (McRae et al.,

1997, 2005; Randall et al., 2004; Taylor et al., 2012). For each concept, we calculated

the mean correlational strength between all pairs of significantly correlated features

within the concept (Randall et al., 2004; Taylor et al., 2008, 2012). Since it has been

argued that correlations with distinguishing features may be spurious (Cree et al., 2006),

we calculated mean correlational strength of shared features only. Taxonomic features

(e.g., is an animal), which arguably are not features at all, were not included in the calcu-

lation of mean distinctiveness, mean correlational strength, or NOF (McRae et al., 2005;

Taylor et al., 2012). Mean correlational strength was log-transformed to give a more nor-

mally distributed predictor variable.1

Our experiment used a correlational rather than a factorial design, where the effects

of the theoretically less interesting variables could also be included in the analysis

B. J. Devereux et al. / Cognitive Science 40 (2016) 331



along with the theoretically interesting predictors of mean distinctiveness and mean

correlational strength. This approach has the advantage of using a much larger set of

concept words than is possible with factorial designs. Generating sets of well-matched

stimuli for factorial designs may result in unrepresentative sets of experimental items,

since factors that are orthogonal with respect to the items in the experiment are often not

actually orthogonal in the entire population of items from which the stimuli are sampled,

leading to problems of generalizability (Baayen, 2010; Balota, Cortese, Sergent-Marshall,

Spieler, & Yap, 2004; Hogarth, 2005). For our predictions regarding the effects of feature

statistics at early and late stages of processing, we again chose a correlational approach

over a factorial approach. Rather than attempting to manipulate the time course of partici-

pants’ responses through experimenter-chosen timing parameters (e.g., different response

deadline conditions, which are difficult to achieve satisfactorily with spoken stimuli), we

instead analyze how effects of feature statistics vary as a function of participants’ overall

response speed. In this way, we avoid sampling a relatively small set of possible timing

manipulations, which may give an incomplete picture of the dynamics of conceptual pro-

cessing (see Mirman & Magnuson, 2009, for a similar argument against timing manipula-

tions in priming paradigms).

2.1.3. Procedure
Participants were tested in small groups in a sound-attenuated room. They listened to

the stimuli over headphones and were instructed to press a button labeled “yes” with their

dominant hand when the stimulus was a real word in English and a button labeled “no”

with their other hand when it was not a real word. They were asked to do the task as

quickly and as accurately as possible. There were four blocks of trials, with words and

non-words evenly distributed over blocks. The order of items was pseudo-randomized

within each block, and the order of the four blocks was randomized across subjects to

ensure that there were no systematic practice or fatigue effects for items. Response times

were measured from stimulus onset, and the timeout was 2,500 ms. The inter-trial inter-

val was 1,200 ms. The experiment lasted approximately 45 min.

2.1.4. Statistical analyses
Since high collinearity between predictor variables results in unstable estimated coeffi-

cients (Baayen et al., 2006), we assessed collinearity between the (mean-centered) vari-

ables by calculating the condition index (Belsley, Kuh, & Welsch, 1980). The condition

index was 2.69, indicating low and acceptable collinearity between our stimulus variables

(Belsley et al., 1980). Details of the descriptive characteristics of the experimental items

and a table of the correlations between the predictors are provided in the Supplementary

Material (Tables S1 & S2).

Response time and error data were analyzed with mixed effects models with by-subject

and by-item random intercepts in R (R Development Core Team, 2008) with the lme4

(Pinheiro & Bates, 2000), languageR (Baayen, 2008), and LMERConvenienceFunctions

(Tremblay & Ransijn, 2012) libraries. Four session-specific variables relating to

other effects such as fatigue were also included in the mixed models: (a) trial order (the
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location of each item in the presentation sequence), (b) whether the subject had

responded with the same hand on the preceding trial (previous response same), (c)

whether the participant had made an error on the previous trial (previous response
error), and (d) the RT on the previous trial (the inverse RT of the preceding trial with

the inverse duration of that stimulus partialed out). Model fitting was done following the

iterative procedure outlined by Tremblay and Ransijn (2012). We began with a full

model, including all session and predictor variables as fixed effects and random inter-

cepts for subjects and items. Non-significant session variables were then iteratively

removed from the full model by a backwards elimination procedure until only significant

variables remained. We then iteratively forward-fit random effects to include all random

slope parameters that gave a significant improvement in model fit. Given our hypotheses

concerning mean distinctiveness and mean correlational strength, fixed effects for these

variables were forced into the final model irrespective of their significance. We checked

for nonlinear relationships between inverse RT and the mean distinctiveness and mean

correlational strength variables using restricted cubic spline functions with three knots,

at quantiles 0.1, 0.5, and 0.9 (the default quantiles of the rcs function in the R rms

package). No nonlinear effects were found (|t| < 1). We also tested for an interaction of

the mean distinctiveness and mean correlational strength measures, which was not signif-

icant (|t| < 1). Nonlinear and interaction terms were therefore not included in the final

model. The p-values for the RT models are derived from 1,000,000 samples from the

posterior distribution of the parameters of the fitted model using Markov Chain Monte

Carlo methods (Baayen et al., 2008). We first present the results of a standard mixed

model analysis that includes all participants. Given our hypothesis that conceptual

processing involves general-to-specific activation mediated by early effects of feature

sharedness and later effects of correlational strength within the concept, we also

investigate how conceptual structure effects vary as a function of participants’ overall

response speed.

2.2. Results

The mean and standard deviation of correct real-word responses across all items and

participants were 853 and 238 ms, respectively. RT data were inverse-transformed (Ulrich

& Miller, 1994) and the harmonic mean was 803 ms. The fixed effects from the mixed

effects analyses are presented in Table 1. The model fitting procedure (see “Statistical

analyses”) resulted in by-subject random slope parameters being added for duration, pho-

neme rate, lemma frequency, familiarity, and speed on previous trial. The results show

predictable effects for the session and control variables. Participants’ lexical decision

latencies were faster when they had been fast on the preceding trial, and when the previ-

ous response had been an error. Response times were faster for more frequent words,

more familiar words, and words with higher phoneme rate. RTs were slower for longer

words. RTs were facilitated by a greater number of semantic features, consistent with ear-

lier NOF findings in lexical decision in the visual modality (Grondin et al., 2009; Pexman

et al., 2002). We found a significant facilitatory effect of feature sharedness across
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concepts (i.e., an inhibitory effect of the mean distinctiveness measure), indicating that

participants are faster to respond to concepts with relatively more shared features, consis-

tent with our predictions. There was no significant effect for mean correlational strength
within the concept, although there was a facilitatory trend.

The error rate on real-word trials was 5.2%. Error data were analyzed with a general-

ized mixed effects model (Table 2). Random slope parameters for familiarity were

included in the final model. As in the RT analysis, significant effects followed predicted

patterns. Participants made fewer errors on more familiar words, on longer words, on

words with higher phoneme rate, and when they had made an error on the preceding trial.

Participants made more errors when they responded using the same hand on the previous

trial, when they were near the end of the testing session (Trial Order), and when they

were fast on the preceding trial. There were no effects of mean distinctiveness or mean

correlational strength in the error analysis.

Our main predictions concerned the influence of feature statistics across the time

course of spoken word processing. Using a correlational approach, we tested these predic-

tions by investigating how the influence of distinctiveness/sharedness and correlational

strength varied as a function of participants’ overall speed. We conducted a multiple

Table 1

Fixed effects from the mixed effects model of the inverse-transformed lexical decision RT data

Estimate SE t-value p-value

Previous response error 0.018 0.009 1.994 .046

Speed on previous trial 0.052 0.004 12.547 <.001
Duration <0.001 <0.001 �9.380 <.001
Phoneme rate 0.015 0.003 5.555 <.001
Lemma frequency 0.011 0.004 2.522 .006

No. of features 0.005 0.002 2.967 .001

Familiarity <0.001 <0.001 2.376 .010

Mean distinctiveness �0.072 0.032 �2.263 .013

Mean correlational strength 0.022 0.017 1.324 .146

Table 2

Fixed effects from the mixed effects model of the lexical decision error data

Estimate SE t-value p-value

Previous response same 1.201 0.097 12.365 <.001
Previous response error �0.655 0.209 �3.128 .002

Speed on previous trial 0.139 0.050 2.794 .005

Trial order 0.162 0.042 3.890 <.001
Duration �0.281 0.076 �3.695 <.001
Phoneme rate �0.357 0.076 �4.718 <.001
Familiarity �0.446 0.091 �4.927 <.001
Mean distinctiveness 0.094 0.078 1.200 .230

Mean correlational strength �0.066 0.074 �0.887 .375
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regression analysis for each individual participant with the same set of predictor variables

as used in the mixed model of RT (following the method of random regression; Lorch &

Myers, 1990). These models generated standardized beta estimates of the influence of

each variable for each subject, which we then correlated with participants’ mean inverse-

transformed RTs, to test whether the effect of each variable varied as a function of over-

all response speed. First, we focus on the two theoretically interesting variables, mean

distinctiveness and mean correlational strength. Consistent with our prediction that slower

participants should be more sensitive to the dynamics of network settling, participants

with slower mean response latencies showed a greater facilitatory effect of mean correla-

tional strength than faster participants (the effect of mean correlational strength correlated

negatively with participants’ mean inverse-transformed RT; r = �.45, p = .007; see

Fig. 2A). The corresponding analyses with the mean distinctiveness variable showed that

the influence of distinctiveness/sharedness did not vary with speed of processing

(r = �.10, p = .56; Fig. 2B). In order to check whether the significant correlation for the

mean correlational strength effect depends on this particular sample of subjects, we con-

ducted a bootstrap resampling of the correlation coefficients to obtain a bootstrap confi-

dence interval and bootstrap p-value for the correlation coefficient test statistic (see, e.g.,

Efron & Tibshirani, 1986; bootstrap computed using the R boot package). We took

10,000 samples of 34 subjects, drawn with replacement from the set of 34 subjects,

(A) (B) (C)

Fig. 2. Participants’ sensitivity to (A) mean correlational strength (i.e., the standardized beta-estimate for cor-

relational strength from the regression model fitted for each participant) and (B) mean distinctiveness, as a

function of their mean RT. The results show a greater facilitatory effect of correlational strength for slower

participants, but no difference in the effect of mean distinctivess as a function of participant mean RT. Filled

circles indicate effects that were significant in that individual participant’s regression, open circles indicate

effects that were not significant in that individual’s regression. Error bars for each participant represent that

participant’s standard error for the beta estimate. The red line depicts the locally weighted scatter plot

smoothing (LOWESS) curve. (C) 95% confidence intervals for the mean correlational strength and mean dis-

tinctiveness correlations reported in (A) and (B), based on bootstrap resampling of participants (see

“Results”). Red circles are the mean values of the correlation statistics across bootstrap samples. Red aster-

isks (overlapping with the circles) are the correlation values for the 34 subjects reported in (A) and (B).
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creating a distribution of correlation coefficients. Consistent with the parametric p-value
reported above, the 95% confidence interval did not intersect zero (bias-corrected 95%

CI: lower bound = �0.69; upper-bound = �0.11; Fig. 2C). The bootstrap analysis there-

fore supports the conclusion that our significant mean correlational strength correlation is

robust with respect to the sampling distribution of the correlation statistic.

Is the correlation for the correlational strength effect greater than the correlation for

the distinctiveness effect? To answer this question, we used a permutation test. We built

up a null distribution for the difference between the distinctiveness and correlational

strength correlations by permuting subject mean RTs 10,000 times, and calculating the

difference in Pearson correlation values for distinctiveness and correlational strength for

each permutation. The one-sided permutation based p-value for the difference in the cor-

relation values was 0.048, indicating that the relationship between the correlational

strength effect and mean RT is significantly stronger than that between distinctiveness

and mean RT.

For the other predictor variables included in the mixed effects model, only the influ-

ence of duration showed a significant relationship with mean RT (r = .69, p < .001; see

Fig. S1A); this is consistent with the hypothesis that faster participants’ lexical decisions

are more strongly influenced by surface properties of the word form whilst those of

slower participants are relatively more influenced by later semantic settling. None of the

other session or concept predictors showed significant correlations (p’s > 0.1; Fig. S1).

The pattern of results for the mean distinctiveness and mean correlational strength

measures suggests that while both fast and slow participants are sensitive to the early

activation of shared features, slow participants are further influenced by the gradual

emergence of a coherent core semantic representation driven by strong correlation

between features within the concept. This interpretation assumes that slow responders dif-

fer from fast responders in that they have a higher threshold of semantic evidence for

making their response. Although we cannot discount the possibility that fast and slow

participants may have the same response threshold but differ in speed for other reasons—
some participants may simply be cognitively faster than others—this possibility does not

account for the difference in the effect of mean correlational strength for fast and slow

responders relative to other predictor variables. If it were the case that slow responders

respond on the same basis as the fast responders, except more slowly, then there should

not be differences in the effects due to conceptual structure.

3. Experiment 2: Simulation study

We subsequently tested our predictions in a connectionist simulation that modeled the

activation of meaningful concept features. Recurrent connectionist simulations enable us

to describe the flow of activation through interconnected semantic feature nodes over

time, and they allow us to measure the influence of feature statistics on the evolution of

meaning.
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3.1. Method

3.1.1. Network architecture
The present simulations were based on the two-layer attractor network model of Cree

et al. (2006), with a 30-node input layer connected to a 2,341-node recurrently connected

semantic layer (a node for each feature in the anglicized McRae norms). However, the net-

work of Cree et al. (2006) simulates a word reading task, mapping orthography to seman-

tics, and as such all word form information is available immediately to the model: From

the first time-tick, corresponding to stimulus onset, an activation pattern representing the

written word is presented on the input layer of the network. The target semantic pattern

emerges on the semantic feature layer gradually, over a series of processing time-ticks.

In order to adapt this architecture to spoken word comprehension, in our implementa-

tion the input is presented to the model gradually, with a new bit of information (i.e.,

input node) provided to the model on each time-tick. On the first time-tick, only the first

node of the 30-node input layer is provided (i.e., clamped to its input value), on the sec-

ond time-tick, the first and second nodes are provided, and so on, until all 30 input nodes

making up the full input pattern are provided at time-tick 30 (time-tick 30 therefore cor-

responds to the offset of the auditorily presented word form). Activation in the semantic

layer continues to unfold for an additional 20 time-ticks, for a total of 50 processing

time-ticks (in the original Cree et al. model, activation unfolds over 20 time-ticks after

word form presentation). Whereas the input in the Cree et al. simulations represented

orthography, here it represents phonology, and the temporally sequential nature of the

phonological input is explicitly modeled. The model was implemented using the MikeNet

V8.02 package (http://www.cnbc.cmu.edu/~mharm/research/tools/mikenet/).

As in Cree et al. (2006), the input patterns are abstract representations of the word

forms, with each word corresponding to a unique random pattern consisting of an activa-

tion value of 1 on 3 of the 30 input nodes and an activation value of 0 on the other 27

nodes. This gives input patterns which are highly overlapping (representing overlapping

phonology in our case) and which model the arbitrary nature of the mapping from word

form to semantics. In particular, at early time-ticks, the partially presented input pattern

for a particular item will be consistent with a cohort of several word forms, and this

cohort diminishes as more input becomes available until a uniqueness point is reached

and only one word remains consistent with the input.

3.1.2. Training
The simulation was trained using all 517 concepts in the anglicized McRae norms.

The network was trained using continuous recurrent back-propagation through time

(Plaut, McClelland, Seidenberg, & Patterson, 1996). During training, cross-entropy error

(i.e., the measure of agreement between the target and observed activation patterns) was

evaluated over all 50 time-ticks (error is evaluated over the final 10 time-ticks in the ori-

ginal Cree et al. model). This was done so that the model would be trained to try and

activate semantic features consistent with the target concept as soon as possible, before

the offset of the word form and before the word form pattern has become consistent with
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a single specific concept. This design decision implements a principle of interactive

models of spoken word recognition such as the cohort model, where semantic information

is activated as rapidly as possible, even before a word’s recognition point (Gaskell &

Marslen-Wilson, 2002; Marslen-Wilson, 1987; Moss et al., 1997).

In the trained model, activation propagates from the input layer to the semantic layer,

eventually producing the correct activation pattern on the semantic layer. The learned

weights between input and semantic layers capture a mapping of activation between pairs

of nodes on the two layers and will be different depending on the particular values on the

input nodes. Given that the input representations are arbitrary patterns, we conducted sep-

arate simulations with 30 different independent sets of randomly generated input patterns,

to ensure that our results properly generalized over the set of possible word form-to-

semantics mappings.

In recurrent back-propagation networks, a node n’s input at time t, xn(t), is calculated

as a weighted average of its actual external input at that time-tick, en(t) (i.e., the summa-

tion of incoming activation from other connected nodes), and its input at the previous

time-tick, xn(t�1) (Plaut et al., 1996; see also O’Connor, Cree, & McRae, 2009):

xnðtÞ ¼ cenðtÞ þ ð1� cÞxnðt � 1Þ

Holding the total number of time-ticks in the simulation constant, the free parameter c
controls the speed at which a node responds to changes in its external input (when c is

close to 1, activation is mostly influenced by the current external input and can change

quickly; when c is close to 0, activation is mostly influenced by the input on the previous

time-tick and changes slowly). In Cree et al.’s simulations, c is chosen as 0.2 (following

Plaut et al., 1996, and the MikeNet default settings). However, in our case, the choice of

c reflects a particular relationship between the rate of phonological change in the input (1

node per time-tick) and the rate of activation change on the semantic layer. We therefore

ensured that our results generalized over different values of c (0.16, 0.2, & 0.24).

In total therefore there were 90 separate trained models (30 sets of input patterns and

3 choices of c), which furthermore were initialized with different activation values and

connection weights (random values in the range 0–0.1 for initial activations and in the

range 0–0.05 for initial connection weights). Other training details were the same as Cree

et al. (2006).

3.1.3. Evaluation and statistical analyses
To simulate the activation of meaning from spoken word input, we presented the word

form pattern associated with each concept to the trained models on the input layer (gradu-

ally over 30 time-ticks, as in training) and recorded the activation levels of the target fea-

tures of that concept on the output layer for each of the 50 time-ticks. For each of the 90

trained models, we conducted five evaluation runs, again with different randomizations of

the initial activation values, and averaged the resultant activations over the five runs.

We analyzed the simulation output in two ways. Since the simulation output records

the activation values of each individual feature node, we first analyzed the output in
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terms of individual features. Secondly, we analyzed the model output at the level of

concepts, averaging the target feature activations within each concept. For this analysis,

we determined how mean concept activation was influenced by the concept-level

measures of mean distinctiveness and mean correlational strength (the same variables we

used in the behavioral analyses) at each time-tick. This analysis is analogous to the by-

subject regression analysis of the behavioral RT data, with a separate regression model fit

at each time-tick to evaluate the influence of the two measures at each time-tick.

3.2. Results

3.2.1. Early activation of shared features
The average activation values for shared and distinguishing features, averaging over

the 90 training instances and over all feature instances in all concepts, are shown in

Fig. 3A. Because approximately 2/3 of all features are shared (4,273 shared vs. 2,050 dis-

tinguishing), we further divided the shared features into highly shared (high S) and mod-

erately shared (low S) groups, based on a median split of their distinctiveness values. The

numbers of distinguishing (D), low S and high S feature instances in the model are there-

fore comparable (2,050, 2,129, and 2,144, respectively). Consistent with the results

described by Cree et al. (2006; Simulation 1), distinguishing features were more strongly

activated than shared features at most time-ticks (ticks 22–50; Fig. 3A). However, at

early time-ticks (2–21), activation for shared features, and in particular the high S fea-

tures, was significantly greater than for distinguishing features.

Although shared features within the target concept have high activation even as early

as the second time-tick, early activation patterns are necessarily diffuse and include non-

target features (see Fig. 1). This is because the word form input exerts a stronger influ-

ence on activation at early time-ticks, and features not in the target concept but consistent

with the presented word form pattern will also tend to be activated. Our word form pat-

terns were generated randomly (following Cree et al.) and so, on average, features occur-

ring in many concepts will be consistent with more input patterns. For example, made of
metal and is large are strongly activated for pheasant at early time-ticks, because many

of the concepts that have word form patterns overlapping with the word form pattern for

pheasant also share these features. Thus, the simulation is consistent with an account in

which semantic information about phonological cohort competitors initially becomes acti-

vated (see “Discussion”). In the simulation, the diffuse activation driven by the input

gives way to more specific semantic representations driven by feature correlation. Similar

results are found irrespective of the choice of the speed parameter or the choice of word

form patterns.

The temporal pattern of activation of shared and distinguishing features in the connec-

tionist model is thus consistent with our general-to-specific hypothesis for the activation

of meaning. More specifically, on the assumption that the early activation of general

shared information is sufficient evidence for making lexicality judgments, the attractor

network data support an interpretation of our behavioral findings in which concepts with

many highly shared features (such as pheasant; Fig. 3B) are facilitated in lexical decision
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compared to concepts with more distinctive features (e.g., microscope; Fig. 3C) because
the former induce more early, shared-feature semantic activation that facilitates a rapid

response.

3.2.2. Concept activation and mean distinctiveness
The behavioral experiment measured RTs to concepts rather than to individual fea-

tures, and the variables used in the corresponding analyses represented summary measures

of whole concepts (i.e., mean distinctiveness of the concepts’ features and mean correla-

tional strength of the concepts’ features). Our second analysis of the simulation therefore

examined how the mean activation of concepts’ features at each time-tick related to the

mean distinctiveness and mean correlational strength measures used in Experiment 1. In
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Fig. 3. The simulated time course of activation for shared (S) and distinguishing (D) features. (A) The mean

activation patterns for the shared and distinguishing features of target concepts. The shared features are fur-

ther divided by a median split into those that are moderately shared (occurring in 3–17 concepts; low S) and

those that are highly shared (occurring in 18 or more concepts; high S). The number of D, low S, and high S

feature instances are approximately equal. Shared features, and in particular high S features, have higher ini-

tial activation. Non-target features are features outside of the target concept, which should not be activated

by the model. The three bands underneath the plot depict the time intervals when there is a significant differ-

ence (p < .05, Bonferroni corrected for number of time-ticks and number of contrasts) between the three

pairs of feature types (first band: “high S” vs. “low S”; second band: “D” vs. “low S”; third band: “high S”

vs. “D”; the pair of colors in each band represents the pair of groups being compared). (B) The time course

of feature activation over the 50 time-ticks for the low mean distinctiveness concept pheasant (all features
are high S). Averaging across features, pheasant has relatively high initial activation. (C) The time course of

feature activation for the high mean distinctiveness concept microscope. Averaging across features, micro-

scope has relatively low initial activation.
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the same manner as the linear regression models were fitted for each subject individually

in Experiment 1, we fitted linear regression models for each time-tick of the model’s time

course. As a proxy for RT, we used mean activation strength of target features as the

dependant variable (Cree et al., 2006; see also Laszlo & Plaut, 2012). The theoretically

important predictor variables were the same as in Experiment 1 (the lexical, phonological

and other variables used in Experiment 1 were not included as the model is na€ıve to these

factors). Fig. 4 presents the beta estimates reflecting the influence of mean distinctiveness

at each time-tick. Consistent with the feature-based analysis above, there is a facilitatory

effect of sharedness at early time-ticks (negative beta-estimates for mean distinctiveness

up to tick 21). At later time-ticks, concepts with more distinctive features are facilitated.

This pattern of results is consistent with the hypothesis that conceptual activation

becomes increasingly specific over the time course of processing. We note that a facilita-

tory effect of distinctiveness was not observed for the slower participants in the behav-

ioral study, consistent with our claim that this information is not required for the task.

Instead, slow participants appear to be influenced by shared, correlated features giving

category-level evidence (e.g., “large cat”; Fig. 2B) rather than distinctive features.

3.2.3. Concept activation and mean correlational strength
Fig. 5 presents the beta estimates for the influence of mean correlational strength at

each time-tick. The effect of correlational strength is weaker than distinctiveness in

general and is highly variable at early time-ticks (and highly sensitive to the particular

Fig. 4. The influence of mean distinctiveness on the mean activation of target concepts in the simulation

(i.e., the standardized beta-estimate for mean distinctiveness from the regression model fitted at each time-

tick), presented as a function of time-tick. The plot shows an initially facilitatory effect of sharedness (nega-

tive beta-estimates), with a later facilitatory effect of distinctiveness (positive beta-estimates).
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word form patterns used, as indicated by the large error bars). However, after the offset

of the word form input (time-tick 30) mean correlational strength settles into a clear facil-

itatory pattern. Taken together, these results are in line with our interpretation of the dif-

ferent feature statistics effects for fast and slow responders—fast responders respond on

the basis of early shared feature activation, whereas slow responders respond on the basis

of later and more specific activation, which is driven by strong correlations between fea-

tures within the concept.

4. Discussion

The present results provide new evidence on how conceptual structure statistics affect

spoken word processing. Across all participants, lexical decisions were facilitated when

concepts had many shared features, whereas only slow participants also showed facilita-

tion for concepts with greater correlational strength between their shared features. The

computational simulations confirmed these effects of feature statistics, with stronger acti-

vation of shared features at early time-ticks and a positive association between mean cor-

relational strength and concept activation at later time-ticks.

According to distributed models of conceptual representations such as the CSA (Tyler

& Moss, 2001b; Tyler, Moss, et al., 2000) and McRae and colleagues’ model (Cree et al.,

2006; McRae et al., 1997), the activation of a feature within a distributed semantic

Fig. 5. The influence of mean correlational strength on the mean activation of target concepts in the simula-

tion (i.e., the standardized beta-estimate for mean correlational strength from the regression model fitted at

each time-tick), presented as a function of time-tick. The plot shows a late facilitatory effect of correlational

strength.
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system is a function of its correlational strength with other features, with highly corre-

lated features activated faster than weakly correlated features. That the fast participants

are not sensitive to the concepts’ mean correlational strength suggests that they make

their decisions before activation has begun to settle into a network of core intercorrelated

features, giving relatively less weight to semantic evidence when making their judge-

ments. We argue that the lexical decision performance of slow participants was influ-

enced by the speed with which a coherent set of interconnected features within the

concept activated. This account is consistent with Cree et al. (1999), whose simulations

examined the relationship between overall concept settling rate and concept intercorrela-

tional density, and showed the strongest influence of intercorrelational strength at later

time-ticks (Cree et al., 1999; Table 1). Within a concept, the effect of mean feature

correlation is most pronounced at later time-ticks, when the concept representation is

settling.

In the case of feature distinctiveness/sharedness, the results from feature verification

experiments have been varied. Cree et al. (2006) reported a facilitatory effect of feature

distinctiveness, with distinctive features verified faster than shared features. This contrasts

with the facilitatory effects of sharedness in the present lexical decision study, and also

with the feature verification results of Randall et al. (2004), who found an inhibitory

effect of feature distinctiveness for living-thing concepts. Facilitatory effects of shared-

ness are also in line with evidence showing that high numbers of shared features are

facilitatory in lexical and semantic decision to written words (Grondin et al., 2009). The

apparent discrepancy here can be resolved by a more detailed account of the dynamics of

processing, where the influence of sharedness/distinctiveness on processing can vary over

time and with task demands. Cree et al.’s task paradigm used relatively slow timing

parameters, and therefore may have been more suited to tapping later and higher-order

stages of conceptual processing compared with the “beat the beep” paradigm used by

Randall et al. (see Taylor et al., 2008, for a discussion). Furthermore, effects of shared

and distinctive features may interact with the information demands of a particular task,

with distinctive features exerting less influence when specific concept information is not

required (e.g., domain or lexical decision; Bright et al., 2007; Grondin et al., 2009;

Taylor et al., 2012).

Similar arguments can be made for the interpretation of the effects of distinctiveness

and correlational strength in the present computational model. We chose the Cree et al.

(2006) architecture as the starting point for our simulations because it implements a dis-

tributed feature-based semantic system and because it aims to simulate the dynamics of

conceptual processing unfolding over time. Cree et al. showed that their simulation

accounted for the primacy of distinctive features effect that they observed in their behav-

ioral results and, indeed, in our simulations based on this model we also observe stronger

activation of distinctive features at later time-ticks. This is not surprising given that the

model was trained to activate specific target concept representations. However, Cree’s

architecture used instantaneous input representing word orthography. When we adapted

the architecture to make it more compatible with continuous speech and consistent with

the principles of the cohort model (Marslen-Wilson, 1987), the relationship between
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feature distinctiveness/sharedness and activation was not constant over time, with shared

features in fact showing stronger activation at earlier time-ticks. This shows that, with

appropriate modifications, a distributed feature-based attractor network model of process-

ing dynamics can account for both the current spoken word lexical decision data, as well

as the Cree et al. feature verification results.

Our interpretation of the early sharedness effects and later correlational strength effects

in the model’s dynamics is also supported by Mirman and Magnuson’s simulations with

the Cree et al. (2006) network architecture (Mirman & Magnuson, 2009). They examined

the activation of target concepts over time, together with semantically near and distant

neighbors of those targets (semantic distance was measured as cosine similarity). Consis-

tent with our claims about general-to-specific activation, they found that activation of

semantically distant neighbors was highest at early time-ticks and gradually decreased as

processing progressed. Activation of semantically near neighbors peaked later, before

declining as activation settled on the specific target concept. This later peak for concepts

semantically close to the target is consistent with the activation of a coherent network of

shared, correlated features within the target representation (e.g., the features that compose

large cat if the target concept is tiger, which will also be features of the near neighbors

of tiger) and corresponds to the level of processing at which we claim the slower partici-

pants make their responses.

General-to-specific dynamics in conceptual activation are also compatible with the

results from recent studies of object processing. Shared features facilitate object process-

ing tasks which require a general conceptual representation (e.g., domain decisions; Tay-

lor et al., 2012), whereas distinctive features are facilitatory when the object must be

uniquely identified. In an MEG object naming study (Clarke, Taylor, Devereux, Randall,

& Tyler, 2010; Clarke et al., 2011) we found initial perceptual effects of visual object

stimuli in posterior sensory regions (occipital cortex at 70–120 ms) followed by an effect

(at 80–220 ms) of an increasing number of shared features reflecting coarse, category-

level information in more anterior regions along the ventral stream. At later latencies

(220–280 ms), there were continued effects of sharedness and additionally an effect of

the correlational strength of shared features (as well as effects of feature distinctiveness

and the correlational strength of more distinctive features, as predicted by the CSA for

tasks which involve basic-level identification). These findings are consistent with our

claim that shared features yield early, general semantic activation, whereas the effect of

correlational strength occurs later and determines the speed with which activation

becomes focussed on a specific region of semantic space.

Our findings also reflect the general-to-specific nature of lexical processing proposed in

the cohort model (Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 1978). In the cohort

model, the incoming acoustic signal initially activates a large word-initial cohort of lexical

competitors that match the input. This set of competitors shrinks as members of the cohort

become inconsistent with the incoming signal. At the point in the auditory sequence when

only one word remains that is consistent with the input the word is recognized (the “rec-

ognition” point). In terms of a distributed model of word meaning, this account proposes

that early in the time course of word recognition, activation is spread over a broad area of
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semantic space (a “semantic blend,” corresponding to initial activation of the meanings of

the competitors in the cohort), which progresses gradually toward the specific target repre-

sentation as competitors decay from the cohort (Gaskell & Marslen-Wilson, 1997; Mar-

slen-Wilson, 1987). For example, highly shared features like made of metal may have

some early initial activation for pheasant, because many of the competitors in the initial

cohort of pheasant will have this feature (e.g., fence, fender, ferry). Combining the cohort

model with a feature-based statistical approach to conceptual semantics, we speculate that

the correlational strength of features in the target concept may be one variable influencing

the dynamics of how competitors decay from the cohort over time; that is, the speed with

which the early, general semantic activation of cohort competitors decays is proportional

to how quickly the target shared-correlated feature network becomes activated.

Although we have focused on the role of semantic feature statistics in our analysis of

the lexical decision data, it is important to note that semantic activation is only one of

several components influencing participants’ lexical decisions, and we have not attempted

to explicitly model the effects of these additional factors on the lexical decision process.

For example, for a hypothetical non-word such as pheasanp, semantic features will ini-

tially activate as for pheasant, providing semantic evidence for lexicality that will pre-

sumably interfere with the ability to make a correct non-word judgement, resulting in

more errors and longer reaction times. Lexical decision likely involves the complex inte-

gration of different kinds of phonological and semantic evidence and their associated

decision thresholds (which is outside the scope of the current study, given its focus on

conceptual structure statistics). Clearly, it will be critical for future research to integrate

different models of the factors influencing lexical decision.

It is also important to note that feature-based statistical approaches to concepts are not

intended to capture the full richness of conceptual knowledge. Instead, they account for a

specific aspect of conceptual knowledge—the network topology of the distributed concep-

tual system. In particular, statistical measures do not explicitly represent the conceptual

domain of features (e.g., whether a feature is a feature of living things or of non-living

things) or the features’ sensory modalities (e.g., whether a feature reflects a visual property

or a motor-function property). Nor do the conceptual structure measures capture aspects of

meaning that cannot easily be accounted for within a purely feature-based framework,

such as how concepts and their interrelationships are embedded in richer pragmatic knowl-

edge about the world (Komatsu, 1992; Murphy & Medin, 1985). Rather than capturing the

entirety of conceptual content, feature-based statistics are primarily focused on reflecting

conceptual structure, allowing us to test specific claims about how the internal structure of

concepts and the relationship between concepts influence the processing of meaning.

In summary, our experiments investigated the role of feature statistics in spoken word

recognition. We found that statistical properties of concepts’ features—their distinctive-

ness/sharedness and correlational strength—significantly influence the processing of spo-

ken words. This is important as it demonstrates that the mapping of form onto meaning

in spoken language comprehension depends on the structural properties of the features of

the target concept.
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Note

1. Predictor variables were transformed when their distribution was non-normal (abso-

lute value of skewness and/or kurtosis greater than 3) and transforming gave a

more normal distribution. For RTs, raw, inverse, and log transformed data were

visually inspected and statistically tested for normality, and the inverse transform

was clearly the most appropriate for these data. Results remain the same if raw

variables are used in the reported behavioral analyses.
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Supporting Information

Additional Supporting Information may be found in

the online version of this article:

Table S1. Descriptive characteristics (means and stan-

dard deviations, SD) of the experimental items. Data for

lemma frequency and mean correlational strength are in

retransformed units.

Table S2. Pearson correlation values for pairs of con-

cept predictor variables included in linear effects model.

Fig. S1. Participants’ sensitivity to the less theoreti-

cally relevant concept variables as a function of their

mean RT. Filled circles indicate effects that were signifi-

cant in that individual participant’s regression; open cir-

cles indicate effects that were not significant in that

individual regression. Error bars for each participant rep-

resent that participant’s standard error for the beta esti-

mate. The red line depicts the locally weighted scatter

plot smoothing (LOWESS) curve. (a) Word duration,

r = �.692, p < .001; (b) familiarity, r = .243, p = .17;

(c) number of features (NOF), r = �.061, p = .73; (d)

lemma frequency, r = .240, p = .17; (e) phoneme rate,

r = .162, p = .36.
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